24 Ocak 2020 Elazığ-Sivrice Depreminin Ko-sismik DINSAR Analizi ve Elastik Dislokasyon Modellemesi

Türkiye’nin en önemli neotektonik yapılarından biri olan Doğu Anadolu Fay Zonu (DAFZ) üzerinde birçok deprem meydana gelmiştir. Bu depremlerden biri olan 24 Ocak 2020 tarihli, 6.8 Mw büyüklüğündeki Sivrice-Elazığ depremi, başta Elazığ ve Malatya olmak üzere çeşitli illerde hissedilmiş ve 44 kişinin ölümüne sebep olmuştur. Önemli derecede ekonomik hasara yol açan bu depremin araştırılması ve DAFZ üzerindeki olası tehlikelerin belirlenmesi büyük önem taşımaktadır. Bu çalışmada uzaktan algılama yöntemlerinden biri olan Diferansiyel İnterferometri (DInSAR) yöntemi kullanılmıştır. 16/01/2020 ve 28/01/2020 tarihli, deprem öncesi ve sonrası olmak üzere iki adet Sentinel 1A alçalan yönlü veri seti seçilerek, deprem sonrası oluşan deformasyonu ve zaman serileri belirlenmiştir. Ayrıca DInSAR sonuçlarından elde edilen veriler kullanılarak, fay yapısına ait kayma miktarı ile fay yüzeyi kayma dağılımının belirlenmesi ve gerinim alanının tespiti için, doğrusal ve doğrusal olmayan ters çözüm işlemleri uygulanarak Elastik Dislokasyon Modellemesi uygulanmıştır. Buna göre DAF hattının batı bloğu üzerinde yaklaşık 26 cm’lik bir hareket (uydu doğrulutusundan uzaklamaşma) söz konusu iken doğu bloğu üzerinde 19 cm (uydu doğrultusuna yakınlaşma) hareket gözlemlenmiştir. Elastik Dislokasyon Modellemesi Elazığ depreminin tek bir düzlemsel fay üzerindeki kayma ile açıklanabildiğini ve fay düzlemi üst kabuk bölgesi içinde kalan ve yaklaşık 10 km'ye kadar derinliğe uzanan, güney batı doğrultu atımlı bir fay segmenti olarak tespit edilmiştir. Bu yarı uzaydaki elastik kayma modellemesiyle elde edilen sonuçlara göre; kayma miktarı (slip) 1.95 m, Mw 6.75, kırılma uzunluğu 34.78 km, odak derinliği 10 km, genişlik 7.4 km, doğrultu 240.27°, eğim 69.19°, rake 0.19° olarak hesaplanmıştır. Bu çalışma Sivrice-Elâzığ depreminin doğrultu atımını ortaya koymakta, deprem sonrası oluşan deformasyonu ve yarı uzaydaki elastik fay modelini göstermektedir.

Coseismic DInSAR Analysis and Elastic Dislocation Modelling of The 24 January 2020 Elazig-Sivrice Earthquake

One of Turkey's most important neotectonic structures East Anatolian Fault Zone (EAFZ), has occurred many earthquakes. One of these earthquakes, the 6.8 Mw Sivrice-Elazig earthquake dated January 24, 2020, was felt in various provinces, especially in Elazig and Malatya, and caused the death of 44 people. It is critical to investigate this earthquake, which caused significant economic damage, and to identify possible hazards on the EAFZ. One of the remote sensing methods DInSAR was used in this study. By choosing two Sentinel 1A descending datasets, 16/01/2020 and 28/01/2020 respectively (pre and post earthquake), the surface deformation and time series were determined. In addition, using the data obtained from the DInSAR results, Elastic Dislocation Modelling has been performed by applying linear and nonlinear inverse solutions to determine the slip amount of the fault structure, the fault surface slip distribution, and determine the strain area. According to the DInSAR results, while there is displacement approximately 26 cm (away from the satellite direction) on the western block of the EAF, 19 cm displacement (towards the satellite direction) are observed in the eastern block, respectively. Elastic Dislocation Modelling shows that the observed deformation pattern can be explained by the slip on a single plane fault of the Elazig earthquake. This fault plane was identified as a southwest strike-slip fault segment, which lies within the upper crustal region and extends to a depth of approximately 10 km. According to the results obtained by elastic modelling; slip ratio was calculated as 1.95 m, Mw 6.75, rupture length 34.78 km, focal depth 10 km, width 7.4 km, strike 240.27°, slope 69.19°, rake 0.19°. Overall, the study reveals the strike-slip of the Sivrice-Elazığ earthquake, shows the deformation after the earthquake, and the elastic half-space fault model.

___

  • Aimaiti, Y., Yamazaki, F., Liu, W., & Kasimu, A. (2017). Monitoring of land-surface deformation in the Karamay oilfield, Xinjiang, China, using SAR interferometry. Applied Sciences (Switzerland), 7(8). https://doi.org/10.3390/app7080772
  • Aktuǧ, B., Kaypak, B., & Çelik, R. N. (2010). Source parameters for the Mw = 6.6, 03 February 2002, Çay Earthquake (Turkey) and aftershocks from GPS, Southwestern Turkey. Journal of Seismology, 14(3), 445–456. https://doi.org/10.1007/s10950-009-9174-y
  • Aşcı, M., & Yas, T. (2017). Doğal Kaynakli Potansiyel Alanlarin Birleşik Ters Çözümü. Uygulamalı Yerbilimleri Dergisi 16:27-50
  • Backus, G. E., & Gilbert, J. F. (1967). Numerical Applications of a Formalism for Geophysical Inverse Problems. Geophysical Journal of the Royal Astronomical Society, 13(1–3), 247–276. https://doi.org/10.1111/j.1365-246X.1967.tb02159.x
  • Bayrak, E., & Ozer, C. (2021). The 24 January 2020 (Mw 6.8) Sivrice (Elazig, Turkey) earthquake: a first look at spatiotemporal distribution and triggering of aftershocks. Arabian Journal of Geosciences, 14(22). https://doi.org/10.1007/s12517-021-08756-y
  • Bayik, C., Gurbuz, G., Abdikan, S., Gormus, K. S., & Kutoglu, S. H. (2022). Investigation of Source Parameters of the 2020 Elazig-Sivrice Earthquake (Mw 6.8) in the East Anatolian Fault Zone. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-022-02944-x
  • Bozkurt, E. (2001). Neotectonics of turkey–a synthesis. Geodinamica Acta, 14(1–3), 3–30. https://doi.org/10.1080/09853111.2001.11432432
  • Cakir Z., Barka A., Akyuz S., (2003), Coulomb Gerilme Etkileşimleri ve 1999 Marmara Depremleri Itü dergisi Mühendislik Cilt:2, Sayı:4, 99-111.
  • Çetin, H., Güneyli, H., & Mayer, L. (2003). Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian Fault Zone, Turkey. Tectonophysics, 374(3–4), 163–197. https://doi.org/10.1016/j.tecto.2003.08.003
  • Chinery, M.A.,1963. The stress changes that accompany strike slip faulting. Bull. Seismol. Soc. Am., 53, 921-932. Demir, D. O. (2015). 3 Ekim 2011 (Mw=7.2) Van Depreminden Kaynaklanan Kabuk Deformasyonlarinin Jeodezik Yöntemlerle Araştirilmasi, Doktora Tezi, Harita Mühendisliği Anabilim Dali Geomatik Programi, Yildiz Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Duman, T. Y., & Emre, Öm. (2013). The east Anatolian fault: Geometry, segmentation and jog characteristics. Geological Society Special Publication, 372(1), 495–529. https://doi.org/10.1144/SP372.14
  • Duman, T.Y., Emre, Ö., Özalp, S.,Elmacı, H. ve Olgun, Ş., (2012). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Elazığ (NJ 37-7) Paftası, Seri No:45, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara - Türkiye (https://www.mta.gov.tr/v3.0/hizmetler/yenilenmis-diri-fay-haritalari)
  • Helz, R. L. (2005). Monitoring Ground Deformation from Space. US Department of the Interior, US Geological Survey.
  • Elliott, J. R., Nissen, E. K., England, P. C., Jackson, J. A., Lamb, S., Li, Z., Oehlers, M., & Parsons, B. (2012). Slip in the 2010-2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research: Solid Earth, 117(3). https://doi.org/10.1029/2011JB008868
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. and Şaroğlu, F., (2013). Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye.
  • Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., & Fielding, E. J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research: Solid Earth, 110(9), 1–23. https://doi.org/10.1029/2004JB003338
  • Goldstein RM, Werner CL (1998). Radar interferogram fltering for geophysical applications. Geophys Res Lett 25(21):4035–4038
  • Jackson, D. D. (1972). Interpretation of Inaccurate, Insufficient and Inconsistent Data. Geophysical Journal of the Royal Astronomical Society, 28(2), 97–109. https://doi.org/10.1111/j.1365-246X.1972.tb06115.x
  • Kürçer A, Elmacı H, Yıldırım N, Özalp S (2020). 24 Ocak 2020 Sivrice (Elazığ) Depremi (Mw=6,8) Saha Gözlemleri ve Değerlendirme Raporu. MTA Jeoloji Etütleri Dairesi, p 41
  • Li, Y., Shan, X., Qu, C., Liu, Y., & Han, N. (2018). Crustal Deformation of the Altyn Tagh Fault Based on GPS. Journal of Geophysical Research: Solid Earth, 123(11), 10309–10322. https://doi.org/10.1029/2018JB015814
  • Liu, Y., (2015). InSAR Technique for Earthquake Studies, Master Thesis, Geoscience and Earth Observing Systems Group (GEOS) School of Civil and Environmental Engineering Faculty of Engineering, The University of New South Wales
  • Melgar, D., Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B. W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S., & Öcalan, T. (2020). Earthquake on the East Anatolian Fault Zone Imaged by Space Geodesy Abbreviated title: The Mw6.7 Doğanyol-Sivrice Earthquake. https://doi.org/10.1093/gji/ggaa345/5872486
  • Okada, Y., (1985). “Surface Deformation Due to Shear and Tensile Faults in a Half-space”, Bulletin of the Seismological Society of America, 75: 1135-1154.
  • Pousse-Beltran, L., Nissen, E., Bergman, E. A., Cambaz, M. D., Gaudreau, É., Karasözen, E., & Tan, F. (2020). The 2020 Mw 6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophysical Research Letters, 47(13). https://doi.org/10.1029/2020GL088136
  • Press, F. (1965). Displacements, strains, and tilts at teleseismic distances, J. Geophys. Res., 70(10), 2395–2412, https://doi:10.1029/JZ070i010p02395
  • Rucci, A., Ferretti, A., Monti Guarnieri, A., & Rocca, F. (2012). Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sensing of Environment, 120, 156–163. https://doi.org/10.1016/j.rse.2011.09.030
  • Sarychikhina, O., & Glowacka, E. (2015). Spatio-Temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry. Proceedings of the International Association of Hydrological Sciences, 372, 335–341. https://doi.org/10.5194/piahs-372-335-2015
  • Stekeete, J. A., (1958). “On Volterra’s Dislocations in a Semi-infinite Elastic Medium, Canadian Journal of Physics, 36 (2): 192-205.
  • SARMAP (2018). ENVI SarScape v5.5.0: Geophysical Modeling Tutorial. Available at: https://www.sarmap.ch/tutorials/GeophysicalModelingTutorial_55.pdf (Accessed: 02/03/2022).
  • Şaroğlu, F. (1986). Doğu Anadolu'nun Neotektonik Dönemde Jeolojik Ve Yapısal Evrimi. Rapor No: 7857. Maden Tetkik Arama Genel Müdürlüğü, Ankara. Şengör C, A. M., Yilmaz, Y., Bijliimii, J., & Fakiiltesi, Y. (1981). Tethyan Evolutıon of Turkey: a Plate Tectonic Approach (Vol. 75).
  • Tatar, O., Sözbilir, H., Koçbulut, F., Bozkurt, E., Aksoy, E., Eski, S., Özmen, B., Alan, H., & Metin, Y. (2020). Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw = 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Mediterranean Geoscience Reviews, 2(3), 385–410. https://doi.org/10.1007/s42990-020-00037-2
  • Tiryakioğlu, Aktuğ, B., Yiğit, C., Yavaşoğlu, H. H., Sozbilir, H., Özkaymak, Poyraz, F., Taneli, E., Bulut, F., Doğru, A., & Özener, H. (2018). Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6.6) from GPS observations. Geodinamica Acta, 30(1), 1–14. https://doi.org/10.1080/09853111.2017.1408264
  • Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028
  • Vajedian, S., Motagh, M., Mousavi, Z., Motaghi, K., Fielding, E. J., Akbari, B., Wetzel, H. U., & Darabi, A. (2018). Coseismic deformation field of the Mw 7.3 12 November 2017 Sarpol-e Zahab (Iran) earthquake: A decoupling horizon in the Northern Zagros Mountains inferred from InSAR observations. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101589
  • Yague-Martinez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M., & Bamler, R. (2016). Interferometric Processing of Sentinel-1 TOPS Data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220–2234.
  • Yalvaç, S. (2020). Determining the Effects of the 2020 Elazığ-Sivrice/Turkey (Mw 6.7) Earthquake from the Surrounding CORS-TR GNSS Stations. In Turkish Journal of Geosciences (Vol. 1, Issue 1). Retrieved from : https://dergipark.org.tr/tr/pub/turkgeo/issue/54166/731709
  • Yilmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251–271. https://doi.org/10.1130/0016-7606(1993)105<0251:NEAMOT>2.3.CO;2
  • Zebker, H.A. & Goldstein, R.M. (1986). Topographic mapping from interferometry synthetic aperture radar observations. – Journal of Geophysical Research, 91/B5, 4993–4999.
  • Wang, J., Xu, C., Freymueller, J. T., Li, Z., & Shen, W. (2014). Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 Mw 7.9 Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 119(4), 3371–3392. https://doi.org/10.1002/2012JB009860
  • Wang, R., Xia, Y., Grosser, H., Wetzel, H. U., Kaufmann, H., & Zschau, J. (2004). The 2003 Bam (SE Iran) earthquake: Precise source parameters from satellite radar interferometry. Geophysical Journal International, 159(3), 917–922. https://doi.org/10.1111/j.1365-246X.2004.02476.x
  • Wells, D. L., & Coppersmith, K. J. (1994). New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. In Bulletin of the Seismological Society of America (Vol. 84, Issue 4).
  • Welstead, S. T., (1999). Fractal and wavelet image compression techniques, SPIE Optical Engineering Press, Bellingham, Washington, 232 pp
  • Wiggins, R. A. (1972). The General Linear Inverse Problem: Implication of Surface Waves and Free Oscillations for Earth Structure. in reviews of geophysics and space physics (Vol. 10, Issue 1).
  • Wright, T. J., Parsons, B. E., Jackson, J. A., Haynes, M., Fielding, E. J., England, P. C., & Clarke, P. J. (1999). Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. In Earth and Planetary Science Letters (Vol. 172).
  • Wright, T. J., Lu, Z., & Wicks, C. (2003). Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophysical Research Letters, 30(18). https://doi.org/10.1029/2003GL01