Sürdürülebilir Toprak Üretkenliğinde Biyoçar Kullanımı

Fosil yakıtların enerji kaynağı olarak aşırı kullanımının yanı sıra topraklar üzerindeki baskı sonucu sera gazı ve su buharı emisyonlarının artması küresel ısınmanın temel nedenlerini oluşturmaktadır. Zira su buharı ve sera gazlarının emisyonundaki artış insan faaliyetlerinin en önemli sonuçlarından biridir. Son zamanlarda insan kaynaklı sera gazı emisyonları ile ilgili sorunlara kısmi bir çözüm getirmek için karbon-negatif teknolojilerin geliştirilmesi ve kullanılması önem arz etmiştir. Bu bağlamda organik atıkların termo-kimyasal pirolizinin bir ürünü olarak elde edilen biyoçar materyalinin tarım arazilerinde kullanılması potansiyel olarak sera gazı emisyonlarını azaltırken, tarımsal üretkenliği ve gıda güvenliğini iyileştirmesi açısından oldukça önem arz etmektedir. Bu çalışmanın amacı, önemli bir toprak düzenleyici olarak kabul gören biyoçar maddesinin toprağın, fiziko-kimyasal ve biyolojik özelliklerine olan etkisinin yanısıra bitki gelişimi ve toprakta karbon tutumu açısından önemini ortaya koymak için günümüze kadar yapılan çalışmalar konusunda bir meta analiz yapmaktır.

Use of Biochar in Sustainable Soil Productivity

Excessive use of fossil fuels as an energy source, as well as pressure on the land, results in increased emissions of greenhouse gases and water vapor, which are the main causes of global warming. The increase in emissions of water vapor and greenhouse gases is one of the most significant consequences of human activities. Recently, the development and use of carbon-negative technologies have become important for partially solving problems related to human-induced greenhouse gas emissions. In this context, the use of Biochair material obtained as a product of thermochemical pyrolysis of organic waste in agricultural lands has the potential to reduce greenhouse gas emissions while improving agricultural productivity and food security. The aim of this study is to conduct a meta-analysis of studies conducted to date on the effects of biochar material, which is considered an important soil conditioner, on the physical, chemical, and biological properties of soil, as well as its importance in plant growth and carbon sequestration in the soil

___

  • Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., Lombi, E., 2019. Soil and the intensification of agriculture for global food security. Environment international, 132, 105078.
  • Howell, T.A., 2001. Enhancing water useefficiency in irrigated agriculture. Agronomy journal, 93(2), pp.281-289.
  • Bamminger, C., Poll, C., & Marhan, S. (2018). Offsetting global warming‐induced elevated greenhouse gas emissions from an arable soil by biochar application. Global Change Biology, 24(1), e318-e334.
  • Zhang, A., Bian, R., Hussain, Q., Li, L., Pan, G., Zheng, J., ... & Zheng, J. (2013). Change in net global warming potential of a rice–wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, ecosystems & environment, 173, 37-45.
  • El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., ... & Ok,
  • Y. S., 2019.Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554.
  • Igalavithana, A. D., Shaheen, S. M., Park, J. N., Lee, S. S., Ok, Y. S., 2015. Potentially toxic element contamination and its impact on soilbiological quality in urban agriculture: A critical review. Heavy metal contamination of soils, 81-101.
  • Martinez, J. M., Galantini, J. A., Duval, M. E.,2018. Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. Journal of soilscience and plant nutrition, 18(1), 73-89.
  • Li, M., Wang, J., Guo, D., Yang, R., Fu, H., 2019. Effect of land management practices on the concentration of dissolved organic matter in soil: A meta-analysis. Geoderma, 344, 74-81.
  • Günal E, 2018. Sıvı Hayvan Gübresi ile Zenginleştirilmiş Biyoçarların Ekmeklik Buğdayın Gelişimi, Besin Elementi Alımı ve Toprak Kalitesine Etkileri. Tokat Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. s. 345.YÖK Tez No: 516795.
  • Günal, E., ve Erdem, H., 2018. Biyokömür; Tanımı, Kullanımı ve Tarım Topraklarındaki Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 15(2), 87-93.
  • Wang, C., Liu, J., Shen, J., Chen, D., Li, Y., Jiang, B., Wu, J., 2018. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agriculture, Ecosystems & Environment, 262, 83-96.
  • Jin, Z., Chen, C., Chen, X., Hopkins, I., Zhang, X., Han, Z., ... Billy, G., 2019. The crucial factors of soil fertility and rapeseed yield-A five year field trial with biochar addition in upland redsoil, China. Science of the Total Environment, 649, 1467-1480.
  • Chen, L., Liu, M., Ali, A., Zhou, Q., Zhan, S., Chen, Y., Pan, X., Zeng, Y., 2020. Effects of biochar on paddy soil fertility under different water management modes. Journal of Soil Science and Plant Nutrition, 20(4), 1810-1818.
  • Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil use and management, 27(2), 205-212.
  • Głąb, T., Palmowska, J., Zaleski, T., Gondek, K., 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11-20.
  • Edeh, I. G., Mašek, O., Buss, W., 2020. A meta-analysis on biochar's effects on soil water properties–New insights and future research challenges. Science of the Total Environment, 714, 136857.
  • Zhang, J., Amonette, J. E., Flury, M., 2021. Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and claysoil. Soil and Tillage Research, 212, 104992.
  • Lehmann, J., Joseph, S., 2009. Biochar for Environmental Management: An Introduction. Lehmann, J., Joseph, S. (Eds.). Biochar for environmental management: science and technology. Earthscan. pp. 1-12.
  • Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D., 2015. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research, 154, 1-13.
  • Li, S., Zhang, Y., Yan, W., Shangguan, Z., 2018. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a siltyclaysoil. Soil and Tillage Research, 183, 100-108.
  • AhmadBhat, S., Kuriqi, A., Dar, M. U. D., Bhat, O., Sammen, S. S., Towfiqul Islam, A. R. M., Heddam, S. 2022. Application of biochar for improving physical, chemical, and hydrological soil properties: a systematic review. Sustainability, 14(17), 11104.
  • Logsdon, S. D. and Karlen, D. L.,2004. Bulkdensity as a soil quality indicator during conversion to no-tillage. Soil and Tillage Research, 78(2), 143-149.
  • Saffih-Hdadi, K., Défossez, P., Richard, G., Cui, Y. J., Tang, A. M., Chaplain, V., 2009. A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil and Tillage Research, 105(1), 96- 103.
  • Lin, L., Han, S., Zhao, P., Li, L., Zhang, C., Wang, E., 2022a. Influence of soilphysical and chemical properties on mechanical characteristics under different cultivation durations with Mollisols. Soil and Tillage Research, 224, 105520.
  • Laird, D., Fleming, P., Davis, D., Horton, R., Wang, B., Karlen, D., 2010. Impact of bioch aramendments on the quality of a typical midwestern agricultural soil. Geoderma 158(3–4), 443–449.
  • Verheijen, F. G., Zhuravel, A., Silva, F. C., Amaro, A., Ben-Hur, M., Keizer, J. J., 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194-202.
  • Mustafa, A., Minggang, X., Shah, S. A. A., Abrar, M. M., Nan, S., Baoren, W., Núñez- Delgado, A., 2020. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a redsoil of southern China. Journal of Environmental Management, 270, 110894.
  • Borselli, L., Carnicelli, S., Ferrari, G.A., Pagliai, M. and Lucamante, G., 1996. Effects of gypsum on hydrological, mechanical and porosity properties of a kaolinitic crusting soil. Soil technology, 9(1-2), 39-54.
  • Liu, D., Ju, W., Jin, X., Li, M., Shen, G., Duan, C., Fang, L., 2021. Associated soil aggregate nutrients and controlling factors on aggregate stability in semiarid grassland under different grazing prohibition time frames. Science of the Total Environment, 777, 146104.
  • Annabi, M., Houot, S., Francou, C., Poitrenaud, M., Bissonnais, Y. L., 2007. Soil aggregate stability improvement with urban composts of different maturities. Soil Science Society of America Journal, 71(2), 413-423.
  • Karami, A., Homaee, M.,Afzalinia, S., Ruhipour, H., Basirat, S., 2012. Organic resource management: Impacts on soil aggregate stability and other soil physico- chemical properties. Agriculture, Ecosystems& Environment, 148, 22-28.
  • Sun, F. and Lu, S., 2014. Biochars improve aggregate stability, water retention, and pore‐space properties of clayeysoil. Journal of Plant Nutrition and Soil Science, 177(1), 26-33.
  • Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, C., Yin, G., Ma, X. 2016. Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PloS one, 11(5), e0154091.
  • He, Y., Xu, C., Gu, F., Wang, Y.,Chen, J.2018. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization. Soil and Tillage Research, 184, 281-290.
  • Ma, S., Du, S., Pan, G., Dai, S., Xu, B., Tian, W. 2021. Organic molecular aggregates: From aggregation structure to emission property. Aggregate, 2(4), e96.
  • Ouyang, L., Wang, F., Tang, J., Yu, L., Zhang, R., 2013. Effects of biochar amendment on soil aggregates and hydrauli cproperties. Journal of soilscience and plant nutrition, 13(4), 991-1002.
  • Soinne, H., Hovi, J., Tammeorg, P., Turtola, E., 2014. Effect of biochar on phosphorus sorption and clay soil. Geoderma, aggregate stability, 219, 162-167.
  • Fu, T., Chen, H., Fu, Z., Wang, K., 2016. Surface soil water content and its controlling factors in a small karst catchment. Environmental Earth Sciences, 75(21), 1-11.
  • Liu, Q., Liu, B., Zhang, Y., Lin, Z., Zhu, T., Sun, R., ... Lin, X., 2017. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?.Soil Biology and Biochemistry, 104, 8-17.
  • Githinji L., 2014 Effect of bioch arapplication rate on soilp hysical and hydraulicproperties of a sandy loam. Archives of Agronomy and Soil Science 60(4), 457-470.
  • Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35-44.
  • Jin, L., Wei, D., Yin, D., Zhou, B., Ding, J., Wang, W., Wang, L., 2020. Investigations of the effect of the amount of biochar on soil porosity and aggregation and crop yields on fertilized black soil in northern China. Plos one, 15(11), e0238883.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C. A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836.
  • Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., Singh, B., 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in agronomy, 112, 103-143.
  • Partey, S. T., Saito, K., Preziosi, R. F., Robson, G. D., 2016. Biochar use in a legume– rice rotation system: effects on soil fertility and crop performance. Archives of Agronomy and Soil Science, 62(2), 199-215.
  • Abujabhah, I. S., Bound, S. A., Doyle, R., Bowman, J. P., 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98, 243- 253.
  • Minasny, B., McBratney, A. B., 2018. Limited effect of organic matter on soil available water capacity. European journal of soil science, 69(1), 39-47.
  • Yang, F., Zhang, G.L., Yang, J.L., Li, D.C., Zhao, Y.G., Liu, F., Yang, R.M., Yang, F., 2014. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology, 519, 3086-3093.
  • Williams, A., Hunter, M.C., Kammerer, M., Kane, D.A., Jordan, N.R., Mortensen, D.A., Smith, R.G., Snapp, S., Davis, A.S., 2016. Soil water holding capacity mitigates down side risk and volatility in US rainfed maize: time to invest in soil organic matter?. PloS one, 11(8), p.e0160974.
  • Głąb, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa–Hersztek, M., Tabor, S., 2018. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandysoil. Geoderma, 315, 27- 35.
  • Villagra-Mendoza, K., Horn, R. 2018. Effect of biochar addition on hydraulic functions of two textural soils. Geoderma, 326, 88-95.
  • Carvalho, M. T. M., Madari, B. E., Bastiaans, L., Van Oort, P. A. J., Leal, W. G. O., Heinemann, A. B., Meinke, H., 2016. Properties of a claysoilfrom 1.5 to 3.5 yearsafterbiocharapplication and the impact on rice yield. Geoderma, 276, 7-18.
  • Madari, B.E., Silva, M.A., Carvalho, M.T., Maia, A.H., Petter, F.A., Santos, J.L., Zeviani, W.M. 2017. Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment. Geoderma, 305, 100-112.
  • Baiamonte, G.,Crescimanno, G., Parrino, F., De Pasquale, C. 2019. Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175, 294-303.
  • Razzaghi, F., Obour, P. B., Arthur, E., 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055.
  • Yu, O. Y., Raichle, B., Sink, S. 2013. Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 4(1), 1-9.
  • Novak, J. M., Ippolito, J. A., Watts, D. W., Sigua, G. C., Ducey, T. F., Johnson, M. G., 2019. Biochar compost blends facilitates witchgrass growth in mine soils by reducing Cd and Znbio availability. Biochar, 1(1), 97-114.
  • Laird, D. A., 2008. The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy journal, 100(1), 178-181.
  • Rees, F., Simonnot, M. O., Morel, J. L., 2014. Short‐term effects of biochar on soil heavy metal mobility are controlled by intra‐particle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149-161.
  • Chan, K.Y, Xu, Z., 2009. Biochar: nutrient properties and their enhancement. Chapter 5. In: Lehmann, J, Joseph, S, editors. Biochar for environmental management science and technology. London: Earthscan; p. 67–84.
  • Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., Julson, J. L., 2014. Effect of biochar on chemicalproperties of acidicsoil. Archives of Agronomy and Soil Science, 60(3), 393-404.
  • Demir, Y. (2021). The Effects of The Applications of Zeolite and Biochar to The Soils Irrigated With Treated Wastewater on The Heavy Metal Concentrations of The Soils and Leaching Waters from The Soils. Carpathian Journal of Earth and Environmental Sciences, 16(1), 223-236.
  • Cross, A. andSohi, S. P., 2011. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil biology and biochemistry, 43(10), 2127-2134.
  • Lehmann, J., 2007. A handful of carbon. Nature, 447(7141), 143-144.
  • Lorenz, K., Lal, R. 2014a. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177(5), 651-670.
  • Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., Xing, B. 2020. Biochar’sstability and effect on the content, composition and turnover of soil organiccarbon. Geoderma, 364, 114184.
  • Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., Whitman, T., 2021. Biochar in climate change mitigation. Nature Geoscience, 14(12), 883-892.
  • Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., Ahmedna, M., 2010. Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Science, 175(1), 10-14.
  • Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., Miglietta, F.,2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European journal of agronomy, 34(4), 231-238.
  • Schmidt, M. W., Skjemstad, J. O., Jäger, C., 2002. Carbon isotope geochemistry and nano morphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochemical Cycles, 16(4), 70-1.
  • Bolan, N. S., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., Chung, J. W., 2012. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of the Total Environment, 424, 264-270.
  • Steinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310.
  • Pathak, H., Singh, R., Bhatia, A., Jain, N., 2006. Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution. Paddy and Water Environment, 4(2), 111-117.
  • Zhang, Y., Liu, Y. R., Lei, P., Wang, Y. J., Zhong, H., 2018. Biochar and nitratereduce risk of methyl mercury in soils under straw amendment. Science of the Total Environment, 619, 384-390.
  • Witt, C., Cassman, K. G., Olk, D. C., Biker, U., Liboon, S. P., Samson, M. I., Ottow, J. C. G., 2000. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 225(1), 263-278.
  • Shanthi, P., Renuka, R., Sreekanth, N. P., Babu, P., Thomas, A. P.,2013. A study of the fertility and carbon sequestration potential of ricesoil with respect to the application of biochar and selected amendments. Annals of environmental science, 7, 17-30.
  • Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S., 2010. Sustainable biyochar to mitigate global climate change. Nat. Commun. 1. Article Number 56.
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., Ma, L. Q., 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178, 466-478.
  • Gul, S., Whalen, J. K., 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15.
  • Lusiba, S., Odhiambo, J., Ogola, J., 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soilphysical and chemical properties. Archives of Agronomy and Soil Science, 63(4), 477-490.
  • Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Tsang, D. C. 2019. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345-365.
  • Leng L., ., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., Huang, H., 2020 Nitrogen containing functional groups of biochar: An overview. Bioresource technology, 298,122286
  • Tomczyk, A., Sokołowska, Z., Boguta, P., 2020. Biochar physicochemical properties: pyrolysis temperature and feedstockkind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215.
  • Steiner, C., Das, K. C., Melear, N., Lakly, D., 2010. Reducing nitrogen loss during poultry litter composting using biochar. Journal of environmental quality, 39(4), 1236-1242.
  • Hossain, M.K., Strezov, V., Nelson, P.F., 2015. Comparative assessment of the effect of waste water sludge biochar on growth, yield and metal bioaccumulation of cherry tomato. Pedosphere, 25(5), 680-685.
  • Liao, J., Liu, X., Hu, A., Song, H., Chen, X., Zhang, Z., 2020. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseedrape (Brassica napus L.). Scientific reports, 10(1), 1-14.
  • Novak, J. M., Busscher, W. J., Ducey, T. D. 2009, Evaluation of designer biochars to ameliorate select chemical and physical characteristics of degraded soils. In AIChE Annual Meeting, Nashville. 8-13 November 2009. (conferencepaper).
  • Laird, D., Fleming, P., Davis, D., Horton, R., Wang, B., Karlen, D., 2010. Impact of bioch aramendments on the quality of a typical midwestern agricultural soil. Geoderma 158(3–4), 443–449.
  • Laghari, M., Mirjat, M. S., Hu, Z., Fazal, S., Xiao, B., Hu, M., Guo, D., 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135, 313-320.
  • Pimenta, A. S., de Oliveira Miranda, N., de Carvalho, M. A. B., da Silva, G. G. C., Oliveira, E. M. M. 2019. Effects of biochar addition on chemical properties of a sandy soil from northeast Brazil. Arabian Journal of Geosciences, 12(3), 1-6.
  • Chen, B., Zhou, D., Zhu, L., 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmentalscience&technology, 42(14), 5137-5143.
  • Mia, S., Dijkstra, F. A., Singh, B., 2017. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environmental science& technology, 51(15), 8359-8367.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Cowie, A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.
  • Jiang, J., Xu, R. K., Jiang, T. Y., Li, Z., 2012. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of hazardous materials, 229, 145-150.
  • Ghorbani, M.,Asadi, H., Abrishamkesh, S., 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and claysoil. International soil and water conservation research, 7(3), 258-265.
  • Pandian, K., Subramaniayan, P., Gnasekaran, P., Chitraputhirapillai, S., 2016. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Archives of Agronomy and Soil Science, 62(9), 1293-1310.
  • Ameloot, N., Graber, E. R., Verheijen, F. G., De Neve, S. 2013. Interactions between biochar stability and soil organisms: review and research needs. European Journal of Soil Science, 64(4), 379-390.
  • Zimmerman, A. R., Gao, B., Ahn, M. Y., 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil biology and biochemistry, 43(6), 1169-1179.
  • Bruun, S., Thomsen, I. K., Christensen, B. T., Jensen, L. S.,2008. In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with 14C for 40 daysor 40 years. European Journal of Soil Science, 59(2), 247-256.
  • Thies, J.E. and Rillig, M.C., 2012. Characteristics of biochar: biological properties. In Biochar for environmental management (pp. 117-138). Routledge.
  • Lin, Q., Tan, X., Almatrafi, E., Yang, Y., Wang, W., Luo, H., ... Zhang, C., 2022b. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Science of The Total Environment, 153956.
  • Manirakiza, E., Ziadi, N., Luce, M. S., Hamel, C., Antoun, H., Karam, A., 2019. Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids. Applied Soil Ecology, 142, 90- 98.
  • Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., ... Ok, Y. S., 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3-22.
  • Sial, T. A., Khan, M. N., Lan, Z., Kumbhar, F., Ying, Z., Zhang, J., Li, X., 2019. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Safety and Environmental Protection, 122, 366-377.
  • Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C., 2007. Mycorrhizal responses to biochar in soil-concepst and mechanisms. Plant and soils, 300(1-22), 9-2
  • Pietikäinen, J., Kiikkilä, O., Fritze, H., 2000. Charcoal as a habitat for microbes and its effect on the microbialcommunity of the underlying humus. Oikos, 89(2), 231- 242.
  • Mierzwa-Hersztek, M., Gondek, K., Baran, A., 2016. Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Applied Soil Ecology, 105, 144-150.
  • Ouyang, L., Tang, Q., Yu, L. A., Zhang, R., 2014. Effects of amendment of different biochars on soil enzyme activities related to carbon mineralization. Soil Res, 52, 706-716.
  • Ducey, T. F., Novak, J. M., Johnson, M. G., 2015. Effects of biocharblends on microbial community composition in two coastal plain soils. Agriculture, 5(4), 1060-1075.
  • Aiken, R. M. andSmucker, A. J. M., 1996. Root system regulation of whole plant growth. Annual review of phytopathology, 34(1), 325-346.
  • Matamala, R., Gonzalez-Meler, M. A., Jastrow, J. D., Norby, R. J., Schlesinger, W. H., 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302(5649), 1385-1387.
  • Nie, M., Lu, M., Bell, J., Raut, S., Pendall, E., 2013. Altered root traits due to elevated CO2: a meta‐analysis. Global Ecology and Biogeography, 22(10), 1095-1105.
  • Drogue, B., Combes Meynet, E., MoënneLoccoz, Y., WisniewskiDyé, F., Prigent Combaret, C., 2013. Control of the cooperation between plant growth promoting rhizobacteria and crops by Rhizosphere signals. Molecular microbialecology of the rhizosphere, 1, 279-293.
  • Rogers, E. D. and Benfey, P. N., 2015. Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 32, 93-98.
  • Alburquerque, J. A., Cabello, M., Avelino, R., Barrón, V., del Campillo, M. C., Torrent, J. 2015. Plant growth responses to biochar amendment of Mediterranean soils deficient in iron and phosphorus. Journal of Plant Nutrition and Soil Science, 178(4), 567-575.
  • Abiven, S., Hund, A., Martinsen, V., Cornelissen, G., 2015. Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia. Plant and soil, 395(1), 45-55.
  • Zhu, Q., Kong, L.,Xie, F., Zhang, H., Wang, H., Ao, X., 2018. Effects of biochar on seedling root growth of soybeans. Chilean journal of agricultural research, 78(4), 549-558.
  • Feng, L., Xu, W., Tang, G., Gu, M., Geng, Z., 2021. Biochar induced improvement in root system architecture enhances nutrient assimilation by cotton plant seedlings. BMC plantbiology, 21(1), 1-14.
  • Ren, T., Wang, H., Yuan, Y., Feng, H., Wang, B., Kuang, G., Liu, G.,2021. Biochar increases tobacco yield by promoting root growth based on a three-year field application. Scientific Reports, 11(1), 1-9.
  • Major, J., Rondon, M., Molina, D., Riha, S. J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil, 333(1), 117-128.
  • Marris, E., 2006. Putting the carbonback: Black is the newgreen. Nature, 442(7103), 624-626.
  • Schulz, H., Dunst, G., Glaser, B., 2013. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for sustainable development, 33(4), 817-827.
  • Dai, Y., Zheng, H., Jiang, Z., Xing, B. 2020. Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Science of the total environment, 713, 136635.
  • Jeffery, S., Verheijen, F.G., Van Der Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biocharapplication to soils on crop productivity using meta-analysis. Agriculture, ecosystems&environment, 144(1), 175-187.