Investigating the Effect of Climate Change on Stormwater Networks: Capital Ankara Case

Investigating the Effect of Climate Change on Stormwater Networks: Capital Ankara Case

Bu çalışmada Ankara İlinin geçmiş dönem ve gelecekteki aşırı yağış ve arazi kullanımı/örtüsü değişim analiz sonuçları, Ankara İli Etimesgut ilçesinde yeni inşa edilen bir pilot çalışma alanının yağmur suyu şebekesi için uygulanmıştır. Sistemin performansı, mevcut ve değişen koşullar ile durağan ve durağan olmayan aşırı yağış varsayımı gibi farklı yaklaşımlar altında araştırılmıştır. Sistemin iklim değişikliği projeksiyonları altında yeterli ve beklenen servisi sağlayabileceği ve aşırı yağış için yapılan iklim değişikliği projeksiyonlarına göre sistemin temel tasarımda öngörülen maksimum kapasiteyi projeksiyon süresi boyunca aşmayacağı söylenebilir. Değişen iklim ve arazi kullanım/örtü koşulları birlikte değerlendirildiğinde sistem, 15 dakikalık yağış süresi ve 2 yıl tekerrür periyodu ile akış katsayısı olarak 0,8 kullanılan temel tasarım için tatmin edici bir performans ortaya koymaktadır. Öte yandan sistem gözlem verisi ile yapılan durağan ve durağan olmayan analizlerden elde edilen daha uzun yağış süreleri (30 dakika veya daha fazla gibi) veya daha yüksek tekerrür süreleri (5 yıl ve daha fazlası gibi) ile ayrı ayrı veya birlikte hesaplanan yükler altında beklenen servisi sağlayamayabilir ki bu süreler kritik bir altyapı tesisi ve alan için tercih edilen bir tasarım girdisidir.

___

  • Bahadur, A., Tanner, T., and Pichon. F. (2016). Enhancing Urban Climate Change Resilience: Seven Entry Points for Action. Manila. Asian Development Bank. ©ADB.
  • Batuman, B. (2013). City profile: Ankara. Cities, 31. 578–590. 10.1016/j.cities.2012.05.016
  • Burke, C. B., & Burke, T. T. (2015). Stormwater Drainage Manual 2015. Indiana Local Technical Assistance Program (LTAP) Publications. 100.
  • Efe, M. (2006). Review of modelling softwares used in design and operation of sewerage and storm water collection systems, (Master's Thesis), Graduate School of Natural and Applied Sciences, Istanbul Technical University.
  • Elshorbagy, A., Lindenas, K., & Azinfar, H. (2018). Risk-based quantification of the impact of climate change on storm water infrastructure. Water Science, 32(1), 102-114.
  • Hailegeorgis, T. T., & Alfredsen, K. T. (2017). Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure. Journal of Hydrology. 544. 290-305
  • Kundzewicz, Z. W. (2003). Extreme precipitation and floods in the changing world, Water Resources Systems—Hydrological Risk, Management and Development. Proceedinss of symposium HS02b held during IUGG2003 al Sapporo.
  • Larsen, A. N., Gregersen, I. B., Christensen, O. B., Linde, J. J., & Mikkelsen, P. S. (2008). Future development in extreme one-hour precipitation over Europe due to climate change. In 11ICUD, 11the International Conference on Urban Drainage, Edinburgh, Scotland, 31st August-5th September 2008 (Vol. CD-ROM). Sheffield, UK: University of Sheffield.
  • NYC, (2012). Guidelines for the Design and Construction of Stormwater Management Systems. Developed by the New York City Department of Environmental Protection in consultation with the New York City Department of Buildings.
  • Osman, Y. (2014). Monitoring the future behaviour of urban drainage system under climate change: a case study from north-western England. Open Engineering, 5(1). doi:10.1515/eng-2015-0003
  • Oruc, S., Yucel, I., Yilmaz, A. (2019) Investigation of The Effect of Climate Change on Extreme Precipitation: Capital Ankara Case, Manuscript submitted for publication.
  • Özkil, A. (2015). Searching for the Crumbles of Nature in the Metropolitan Ankara. Unpublished manuscript. Middle East Technical University, Ankara
  • Rosenberg, E. A., Keys, P. W., Booth, D. B. (2010). Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Climatic Change. 102, 319. https://doi.org/10.1007/s10584-010-9847-0
  • Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., &. Smith, D. R. (2005). Impacts of impervious surfaces on watershed hydrology: A review, Urban Water J., 2(4), 263–275.
  • Simonovic, S. P., Schardong, A. Sandink, D., & Srivastav, R. (2016). A Web-based tool for the development of intensity duration frequency curves under changing climate. Environmental Modelling & Software Journal, 81:136-153.
  • Sun, Z., Guo, H., Li, X., Huang, Q., & Zhang, D. (2011). Effect of LULC change on surface runoff in urbanization area. Proceedings of the ASPRS 2011 Annual Conference, Milwaukee, Wisconsin, May 1–5.
  • TDT, (2016). Hydraulic Design Manual. Texas Department of Transportation.
  • Thakali, R., Kalra, A., & Ahmad, S. (2016). Understanding the effects of climate change on urban stormwater infrastructures in the las vegas valley. Hydrology, 3, 34.
  • Trenberth, K. E. (1998). Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Climatic Change, 39, 667-694.
  • United Nations, (2018). World urbanization prospects: The 2018 revision. New York.
  • Yilmaz, E., (2013). Ankara Şehrinde Isi Adasi Oluşumu, PhD. Thesis, Ankara University, Ankara
  • Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992