Sertleştiricinin orta yoğunluklu lif levhanın bazı fiziksel ve mekanik özelliklerine etkisi
Sertleştirici olarak Amonyum Klorür (NH4CI)’ün orta yoğunluklu lif levhanın kalınlığına şişme, su alma, vida tutma direnci, Janka sertlik değeri, eğilme direnci, eğilmede elastikiyet modülü ve çekme direnci özelliklerine etkisi değerlendirilmiştir. Sertleştirici kullanılan (kuru life oranla %10 solüsyon olarak 0.75 kg/m³ katı) ve sertleştirici kullanılmayan (kontrol grubu) fabrika üretimi 18mm orta yoğunluklu lif levhaların hedef yoğunlukları, sırası ile 712 ve 715 kg/m³’tür. Toplam olarak 400 örnek test edilmiştir. Sertleştirici kullanılmayan levhalar, vida tutma direnci hariç, daha iyi mekanik özellikler sergilemiştir. Sertleştirici kullanımı ile vida tutma direnci yaklaşık %9.2 iyileştirilmiştir. Fakat sertleştirici kullanımı, elastikiyet modülü, eğilme direnci, çekme direnci ve Janka sertlik değerlerinde sırası ile yaklaşık %8.4, %7.3, %3.6 ve %1.3 düşüşe neden olmuştur. Şaşırtıcı şekilde, suya daldırma süresi kalınlığına şişme ve su almada zıt sonuçlara sebep olmuştur. Kısa süreli suya daldırmada (2 saat) sertleştirici kullanılan levhaların kalınlığına şişme ve su alma değerleri sırasıyla yaklaşık %40.3 ve %29.6 azalmış iken uzun süreli (24 saat) suya daldırmada kayda değer (sırasıyla yaklaşık %62.4 ve %20) artışlar gözlenmiştir. İstatistiksel analizler, değerlendirilen tüm özelliklerde istatistiksel olarak anlamlı (P<0.05) farklılıklar olduğunu ortaya koymuştur.
Influences of hardening agent on some physical and mechanical properties of medium-density fiberboard
Effects of Ammonium chloride (NH4CI) as a hardening agent on thickness swelling (TS), water absorption (WA), screw holding resistance (SHR), Janka hardness, modulus of rupture (MOR), modulus of elasticity (MOE), and internal bonding (IB) properties of medium-density fiberboard (MDF) were evaluated. Target densities were 712 and 715 kg/m³ for hardener applied (0.75 kg/m³ solid as 10% solution (fiber dry wt.)) and unmodified factory made 18 mm thick MDF, respectively. A total of 400 samples were tested. Boards produced without hardener presented better mechanical properties except for SHR. Indeed, SHR was around 9.2% improved by hardener utilization. However, hardener utilization caused around 8.4%, 7.3%, 3.6%, and 1.3% decreases for MOE, MOR, IB, and Janka hardness, respectively. Surprisingly, soaking time caused opposite results for TS and WA. The TS and WA of the hardener utilized MDF decreased around 40.3% and 29.6% for short-term soaking (2h) but remarkable increases (around 62.4% and 20%, respectively) were observed for long-term (24h) soaking. Statistical analysis proved that there were statistically significant (P<0.05) differences between all the evaluated properties.
___
- Akgül, M., Çamlıbel, O., 2021. The use of borax pentahydrate of ınorganic filler in medium density fiberboard production. Maderas: Ciencia y Tecnologia, 23:1–18.
- Akgül, M., Korkut, S., Çamlibel, O., Ayata, Ü., 2013. Some chemical properties of luffa and its suitability for medium density fiberboard (MDF) production. BioResources, 8(2):1709–1717.
- Akın, A.E., Karaboyacı, M., 2021. Effects of activated carbon on medium density fiber board properties. Bilge International Journal of Science and Technology Research, 5 (Special Issue):7–12.
- Aras, U., Kalaycıoğlu, H., Yel, H., Bitek, G., 2015. Effects of ammonium nitrate on physico-mechanical properties and formaldehyde contents of particleboard. Procedia - Social and Behavioral Sciences, 195:2130–2134.
- ASTM D-1037-78, 1994. Standard methods of evaluating the properties of wood-base fiber and particle panel materials. American Society for Testing and Materials, USA.
- Atar, I., Nemli, G., Ayrilmis, N., Baharoǧlu, M., Sari, B., Bardak, S., 2014. Effects of hardener type, urea usage and conditioning period on the quality properties of particleboard. Materials and Design, 56:91–96.
- Ayrilmis, N., Candan, Z., Akbulut, T., Balkiz, O.D., 2010. Effect of sanding on surface properties of medium density fiberboard. Drvna Industrija, 61(3):175–181.
Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., 2011. Effects of thermal treatment of rubberwood fibres on physical and mechanical properties of medium density fibreboard. Journal of Tropical Forest Science, 23(1):10–16.
- Ayrılmış, N., 2002. Effect of tree species on some mechanical properties of mdf. Journal of the Faculty of Forestry Istanbul University, 1(52):125–146.
- Bekhta, P., Sedliačik, J., Saldan, R., Novák, I., 2016. Effect of different hardeners for urea-formaldehyde resin on properties of birch plywood. Acta Facultatis Xylologiae, 58(2):65–72.
- Bono, A., Krishnaiah, D., Rajin, M., Siambun, N.J., 2006. Variation of reaction stages and mole composition effect on Melamine-Urea-Formaldehyde (MUF) resin properties. In: Studies in Surface Science and Catalysis (Ed: Rhee, H.K., Nam, I.S., Park, J.M.) Elsevier, Amsterdam, 159: pp. 713–716.
- BS EN 320, 2011. Particleboards and fiberboards. Determination of resistance to axial withdrawal of screw. British Standards Institution, U.K.
- Çamlıbel, O., 2020. Physical properties and formaldehyde emission effect of hot press parameters. Artvin Coruh University Journal of Forestry Faculty, 21(2):276–283.
- Çamlıbel, O., Akgül, M., 2020. The Utilizing rock salt of ınorganic filler in medium density fibreboard (MDF) production. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 20(2):158–175.
- Çamlıbel, O., Yılmaz Aydın, T., 2020. Effects of zeolite on some physical properties and formaldehyde release of medium density fiberboard. ProLigno, 16(4):22–28.
- Darmawan, S., Sofyan, K., Pari, G., Sugiyanto, K., 2010. Effect of activated charcoal addition on formaldehyde emission of medium density fiberboard. Indonesian Journal of Forestry Research, 7(2):100–111.
- Halvarsson, S., Edlund, H., Norgren, M., 2008. Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Industrial Crops and Products, 28(1):37–46.
- Hundhausen, U., Kloeser, L., Mai, C., 2015. Usability of maleic anhydride as wood modification agent for the production of medium density fibreboards (MDF). European Journal of Wood and Wood Products, 73(3):283–288.
- Hutten, I.M., 2007. Testing of nonwoven filter media. In: Handbook of Nonwoven Filter Media (Ed: Hutten, I.M.), Elsevier, G.B. pp. 245–290.
- İstek, A., Özlüsoylu, İ., 2021. The effect of temperature and duration changes on mdf properties in lamination process. Journal of Bartin Faculty of Forestry, 23(3):899-905.
- Kızılkaya, A., Aydemir, D., Onat, S.M., İstek, A., 2020. Effects of different nano fillers on the physical and mechanical properties of medium density fiberboards(MDF). Journal of Bartin Faculty of Forestry, 22(3):878-885.
- Levy, S.M., 2012. Lumber-Calculations to select framing and trim materials. In: Construction Calculations Manual (Ed: Sidney, M.L.), Butterworth-Heinemann, Oxford, pp. 351-440.
- Lu, L., Wang, Y., Li, T., Wang, S., Yang, S., Qing, Y., Li, X., Wu, Y., Liu, M., 2021. Calcium carbonate modified urea-formaldehyde resin adhesive for strength enhanced medium density fiberboard production. RSC Advances, 11(40):25010-25017.
- Moreno-Anguiano, O., Cloutier, A., Rutiaga-Quiñones, J.G., Wehenkel, C., Rosales-Serna, R., Rebolledo, P., Hernández-Pacheco, C.E., Carrillo-Parra, A., 2022. Use of agave durangensis bagasse fibers in the production of wood-based medium density fiberboard (MDF). Forests, 13(2): 1-11.
- Önem, B., Kaymakçı, A., 2019. The effect of press mass temperature differences on flatness in MDFLAM production. Furniture and Wooden Material Research Journal, 2(1):61-66.
- Park, S.J., Seo, M.K., 2011. Element and Processing. In: Interface Science and Technology (Ed: Park, S.J. and Seo, M.K.) Elsevier, G.B., Vol.18, pp. 431–499.
- Semple, K.E., Smith, G.D., 2006. Prediction of internal bond strength in particleboard from screw withdrawal resistance models. Wood and Fiber Science, 38(2): 256–267.
- Stark, N.M., Cai, Z., Carll, C., 2010. Wood-Based composite materials. In: Wood Handbook - Wood as an engineering material (Ed.: Ross, R.), Forest Products Laboratory, Madison, WI, pp. 1-28.
- Tor, Ö., Demirel, S., Hu, L., Zhang, J., 2016. Effects of driving torques on direct screw withdrawal resistance in OSB. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 16(2):438-446
- TS 642 ISO 554, 1997. Standard atmospheres for conditioning and/or testing; Specifications. TSE, Ankara.
- TS EN 310, 1999. Wood- Based panels- Determination of modulus of elasticity in bending and of bending strength. TSE, Ankara.
- TS EN 312, 2012. Particleboards-Specifications. TSE, Ankara.
- TS EN 317, 1999. Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. TSE, Ankara.
- TS EN 319, 1999. Particleboards and fibreboards- Determination of tensile strength perpendicular to the plane of the board. TSE, Ankara.
- TS EN 323, 1999. Wood- Based panels- Determination of density. TSE, Ankara.
- Uner, B., Olgun, C., 2017. The effect of hardener on adhesive and fiberboard properties. Wood Research, 62(1):27-36.
- Yorur, H., Birinci, E., Gunay, M.N., Tor, O., 2020. Effects of factors on direct screw withdrawal resistance in medium density fiberboard and particleboard. Maderas: Ciencia y Tecnologia, 22(3): 375–384.
- Wang, L., Tsang, D.C.W., 2018. Carbon dioxide sequestration on composites based on waste wood. In: Carbon Dioxide Sequestration in Cementitious Construction Materials (Ed: Pacheco-Torgal, F., Shi, C., Sanchez, A.P.), Woodhead Pulishing, U.K., pp. 431-450.
- Wu, L., Hoa, S. V., Minh-Tan, Ton-That, 2006. Effects of composition of hardener on the curing and aging for an epoxy resin system. Journal of Applied Polymer Science, 99(2):580-588.