Fesleğen (Ocimum basillicum L.)’nin mikro-morfolojik yapılarına ve sekonder metabolit içeriğine kuraklığın etkisi

Kuraklık stresinin fesleğenin (Ocimum basilicum L.) mikro-morfolojik ve fizyolojik parametrelerine etkisini değerlendirmek amacıyla bitkiler kontrollü ortam koşullarında 3 ay boyunca yetiştirilmiştir. Kuraklık uygulamaları 5 günde bir sulama (kontrol grubu), 10 günde bir sulama (1. grup: düşük derecede stres), 15 günde bir sulama (2. grup: orta derecede stres) ve 20 günde bir 100 ml sulama (3. grup: şiddetli stres) yapılmıştır. Stresin en belirgin etkisi olarak orta seviyedeki kuraklık uygulamasında stoma sayısının arttığı ve stomaların küçüldüğü belirlendi. Stresin şiddeti arttıkça bu parametrelerde herhangi bir değişim olmadı. Benzer etki yaprağın her iki yüzeyinde bulunan capitat ve peltat glandular tüylerde de tespit edildi. Kuraklık stresi fitokimyasal içeriğini de etkiledi. Kuraklık stresi uygulamaları arasında önemli farklılıklar gözlenmemesine rağmen, kuraklık uygulamaları ile kontrol grubu arasındaki farklılık önemliydi. Sonuç olarak, uygulamalar arasındaki farklılıklar ile oluşan mikro-morfolojik ve fizyolojik değişimler fesleğen bitkisinin sekonder metabolit üretimini maksimum tutacak sulama düzeyi olarak belirlenmesini sağlamıştır.

The effect of drought on micro-morphological structures and secondary metabolite content of basil (Ocimum basilicum L.)

To evaluate the effect of drought stress on the micro-morphological and physiological parameters of basil (Ocimum basilicum L.), they were grown under controlled conditions for 3 months. Drought treatments were made which irrigation every five days (control group), ten days (group 1: normal stress), fifteen days (group 2: mild stress), and twenty days (group 3: under extreme stress) with 100 ml water. The most noticeable result of stress was found to be an increase in the number of stomata and a lowers in the size of the stomata in mild drought treatments. There was no differences in these parameters as the severity of stress increased. A similar effect appeared in the capitate and peltate glandular trichomes on both surfaces of the leaf. Drought stress also affected phytochemical content. While no significant differences which were observed between drought stress treatments, the difference between drought treatments and the control group was significant. As a result, the micro-morphological and physiological differences brought on by the variations in the applications allowed for the identification of the irrigation application that will maintain the secondary metabolite production of the basil plant at the maximum level.

___

  • Arve, L.E., Torre, S., Olsen, J.E., Tanino, K.K., 2011. Stomatal responses to drought stress and air humidity. In: Abiotic Stress in Plants-Mechanisms and Adaptations (Ed: Shanker, A., Venkateswarlu, B.), London, IntechOpen, pp. 268-280.
  • Baudoin, D.C., Bush, E., Gauthier, T., Hernandez, A.B., Kirk-Ballard, H., 2022. Effects of irrigation and drought on growth and essential oil production in O. vulgare and R. officinalis. American Journal of Plant Sciences, 13(5): 659-667.
  • Baytop, T. 1999. Türkiye’de Bitkiler ile Tedavi, Geçmişte ve Bugün. Nobel Tıp Kitabevleri, İstanbul.
  • Bertolino, L.T., Caine, R.S., Gray, J.E., 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10: 225. Bettaieb, I., Bourgou, S., Sriti, J., Msaada, K., Limam, F., Marzouk, B., 2011. Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: A comparative study. Journal of the Science of Food and Agriculture, 91(11): 2100-2107.
  • Casson, S., Gray, J.E., 2008. Influence of environmental factors on stomatal development. New Phytologist, 178(1): 9-23.
  • Çınar, N., Aydinşakir, K., Dinç, N., Büyüktaş, D., Işık, M., 2016. Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi. Mediterranean Agricultural Sciences, 29(2): 79-84.
  • Fahn, A., 1979. Secretory Tissues in Plants. Academic Press, London.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: Effects, mechanisms and management. In: Sustainable Agriculture (Ed: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C.), Springer, Dordrecht, pp. 153-188.
  • Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., Khodaei-Joghan, A., 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117: 106-114.
  • İkinci, A., Ak, B.E., Dikmetaş, B., Hatipoglu, I.H., 2022. Şanlıurfa ve Diyarbakır illerinde yetişen alıç (Crataegus spp.) genotiplerinin bazı meyve, yaprak ve stoma özelliklerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 9(4): 850-859.
  • Jamwal, K., Bhattacharya, S., Puri, S., 2018. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9: 26-38.
  • Jiao, P., Wu, Z., Wang, X., Jiang, Z., Wang, Y., Liu, H., Qin, R., Li, Z., 2021. Short-term transcriptomic responses of Populus euphratica roots and leaves to drought stress. Journal of Forestry Research, 32(2): 841-853.
  • Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., Bresta, P., 2020. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. Journal of Forestry Research, 31(1): 1-12.
  • Karaca, M., Kara, Ş.M., Özcan, M.M., 2017. Bazı fesleğen (Ocimum basilicum L.) popülasyonlarının herba verimi ve uçucu yağ oranının belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2): 160-169.
  • Khaleghnezhad, V., Yousefi, A.R., Tavakoli, A., Farajmand, B., Mastinu, A., 2021. Concentrations-dependent effect of exogenous abscisic acid on photosynthesis, growth and phenolic content of Dracocephalum moldavica L. under drought stress. Planta, 253(6): 1-18.
  • Khodadadi, F., Ahmadi, F.S., Talebi, M., Moshtaghi, N., Matkowski, A., Szumny, A., Rahimmalek, M., 2022. Essential oil composition, physiological and morphological variation in Salvia abrotanoides and S. yangii under drought stress and chitosan treatments. Industrial Crops and Products, 187: 115429.
  • Kleinwächter, M., Selmar, D., 2014. Influencing the product quality by applying drought stress during the cultivation of medicinal plants. In: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment (Ed: Ahmad, P., Wani, M.), Springer, New York, pp. 57-73. Korkmaz, M., Fakir, H., 2019. Determination of final consumer characteristics of non-wood forest products. Turkish Journal of Forestry, 10(2): 10-20.
  • Nacar, S., Tansi, S., 2000. Chemical components of different basil (Ocimum basilicum L.) cultivars grown in Mediterranean regions in Turkey. Israel Journal of Plant Sciences, 48(2): 109-112.
  • Orcen, N., Nazarian, G., Gharibkhani, M., 2013. The responses of stomatal parameters and SPAD value in asian tobacco exposed to chromium. Polish Journal of Environmental Studies, 22(5): 1441-1447.
  • Pirasteh-Anosheh, H., Saed-Moucheshi, A., Pakniyat, H., Pessarakli, M., 2016. Stomatal responses to drought stress. Water Stress and Crop Plants: A Sustainable Approach, 1: 24-40.
  • Purushothaman, B., Prasanna Srinivasan, R., Suganthi, P., Ranganathan, B., Gimbun, J., Shanmugam, K., 2018. A comprehensive review on Ocimum basilicum. Journal of Natural Remedies, 18(3): 71-85.
  • Rengifo, E., Urich, R., Herrera, A., 2002. Water relations and leaf anatomy of the tropical species, Jatropha gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration. Photosynthetica, 40: 397-403.
  • Saha, S., Monroe, A. Day, M.R., 2016. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Annals of Agricultural Sciences, 61(2):181-186.
  • Sarah, K., Amir, M., Hassan, S., Khodayar, H., Ahmad, K., 2011. The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). Journal of Medicinal Plants Research, 5(22): 5360-5365.
  • Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 217037.
  • Takshak, S., Agrawal, S.B., 2019. Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology B: Biology, 193: 51-88.
  • Turner, G.W., Gershenzon, J., Croteau, R.B., 2000. Development of peltate glandular trichomes of peppermint. Plant Physiology, 124: 665-680.
  • Widjaja, S.S., Savira, M., 2019. Glucose lowering effect of basil leaves in diabetic rats. Open Access Macedonian Journal of Medical Sciences, 7(9): 1415.
  • Yadav, B., Jogawat, A., Rahman, M.S., Narayan, O.P., 2021. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Reports, 23: 101040.
  • Yang, F., Hu, J., Li, J., Wu, X., Qian, Y., 2009. Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regulation, 58(2): 131-136.
  • Zhao, W., Sun, Y., Kjelgren, R., Liu, X., 2015. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 37(1): 1-9.