Organik Kimya Ders Kitaplarındaki Gösterimler: Alkil Halojenürlerin Nükleofilik Yer Değiştirme ve Ayrılma Tepkimeleri

Alkil halojenürlerin nükleofilik yer değiştirme ve ayrılma tepkimeleri, organik kimya dersi içerisinde pek çok kez karşılaşılan temel tepkimelerin başında gelmektedir. Bu açıdan ders kitaplarında organik kimya dersi açısından son derece önemli yere sahip olan bu tepkimelerde farklı gösterimlere yer verilmesi ve bunların birbiriyle bütünleştirilmesi önem taşımaktadır. Bu nedenle, bu araştırmada Türkiye’deki Kimya Eğitimi Anabilim Dallarında organik kimya derslerinde sıklıkla yararlanılan ders kitaplarında alkil halojenürlerin nükleofilik yer değiştirme ve ayrılma tepkimelerine ilişkin ne tür gösterimlerin kullanıldığının ortaya konulması amaçlanmıştır. Bu amaçla, dört ders kitabında bu tepkimelerin sözel, sembolik ve görsel gösterim türlerine göre nasıl temsil edildiği betimsel olarak incelenmiştir. Analiz sonuçları, hem yer değiştirme hem de ayrılma tepkimelerinde en çok sözel gösterimlere yer verildiğini, bunun ardından sembolik gösterimin geldiğini ortaya koymuştur. Ayrıca araştırmada stereokimya gibi oldukça soyut olan konu içeriğinde dahi görsel gösterimlere tüm ders kitaplarında son derece az yer verildiği belirlenmiştir. Son olarak araştırma, ayırma reaksiyonlarında nükleofilik yer değiştirme reaksiyonlarından daha az görsel temsil olduğunu ortaya koymuştur.

Representations in Organic Chemistry Textbooks: Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

Nucleophilic substitution and elimination reactions of alkyl halides are one of the major reactions encountered many times in organic chemistry course content. It is important to include different representations of these reactions, which have an essential place in organic chemistry lessons, in the textbooks, and to integrate them. Therefore, this study aims to reveal what kind of representations are used regarding the nucleophilic substitution and elimination reactions of alkyl halides in textbooks frequently used in organic chemistry courses in the departments of Chemistry Education in Turkey. For this purpose, how these reactions were represented according to verbal, symbolic, and visual representation types in four textbooks was examined descriptively. Analysis results revealed that verbal representations were mostly used in both substitution and elimination reactions, followed by symbolic representation. Furthermore, the study showed that visual representations were given extremely little space in all textbooks, even in very abstract subject content such as stereochemistry. Finally, the study revealed that there were fewer visual representations in elimination reactions than nucleophilic substitution reactions.

___

  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner., & M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (pp. 191-208), Springer.
  • Anderson, S. Y. C., Ong, W. S.Y., & Momsen, J.L (2020). Support for instructional scaffolding with 1H NMR spectral features in organic chemistry textbook problems. Chemistry Education Research and Practice,21,749-764.
  • Bergqvist, A., Drechsler, M; , Jong; O. D., & Rundgren S.C. (2013). Representations of chemical bonding models in school textbooks – help or hindrance for understanding? Chemistry Education Research and Practice, 14, 589 -606.
  • Bhattacharyya, G., & Bodner, G. M. (2005), “It gets me to the product”: how students propose organic mechanisms. Journal of Chemical Education, 82, 1402− 1407.
  • Boukhechem, M.S, Dumon, A., & Zouikri, M. (2011). The acquisition of stereochemical knowledge by Algerian students intending to teach physical sciences. Chemistry Education Research and Practice, 12, 331–343.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, O. E., Karadeniz, Ş., & Demirel, F. (2008). Bilimsel araştırma yöntemleri (2. Baskı). Ankara: Pegem A Akademi.
  • Carle, M.S., & Flynn, A. B. (2020). Essential learning outcomes for delocalization (resonance) concepts: How are they taught, practiced, and assessed in organic chemistry? Chemistry Education Research and Practice, 21, 622-637.
  • Çepni, S. (2010). Araştırma ve proje çalışmalarına giriş (5. Baskı). Trabzon: Celepler Matbaacılık.
  • Cruz-Ramírez de Arellano D., & Towns M. H. (2014). Students' understanding of alkyl halide reactions in undergraduate organic chemistry, Chemistry Education Research and Practice., 15, 501–515.
  • Edling, A. (2006). Abstraction and authority in textbooks: the textual paths towards specialized language, Unpublished Dissertation thesis, Uppsala: Acta Universitatis Upsaliensis.
  • Ferguson, R., & Bodner, G.M. (2008). Making sense of the arrow-pushing formalism among chemistry majors enrolled in organic chemistry. Chemistry Education Research and Practice, 9, 102-113.
  • Flynn, A.B. (2015). Structure and evaluation of flipped chemistry courses: organic & spectroscopy, large and small, first to third year, English and French. Chemistry Education Research and Practice,16(2), 198-211. doi: 10.1039/C4RP00224E
  • Galloway, K.R., Stoyanovich, C., &. Flynn, A. B. (2017). Students’ interpretations of mechanistic language in organic chemistry before learning reactions. Chemistry Education Research and Practice, 18, 353—374.
  • Galloway, K. R., Leung, M. W., & Flynn, A. B. (2019). Patterns of reactions: a card sort task to investigate students’ organization of organic chemistry reactions. Chemistry Education Resesearch and Practice, 20(1), 30-52. doi: 10.1039/C8RP00120K
  • Gilbert, J. K. (2007). Visualization: a metacognitive skill in science and science education. In Gilbert J. K. (ed.), Visualization in science education (pp. 9–27), Dordrecht: Springer
  • Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5-14.
  • Goodwin, W. (2012). Mechanisms and chemical reaction, Elsevier B.V.
  • Grove, N. P., & Bretz, S. L. (2010). Perry's scheme of intellectual and epistemological development as a framework for describing student difficulties in learning organic chemistry. Chemistry Education Research and Practice, 11, 207–211.
  • Grove, N. P., & Bretz, S. L. (2012). A continuum of learning: from rote memorization to meaningful learning in organic chemistry. Chemistry Education Research and Practice, 13(13), 201–208.
  • Grove, N. P., Cooper, M. M., & Cox, E. L. (2012a., Does mechanistic thinking improve student success in organic chemistry? Journal of Chemical Education, 89(7), 850–853.
  • Grove, N.P,. Cooper, M. M., & Rush, K.M. (2012b). Decorating with Arrows: Toward the Development of Representational Competence in Organic Chemistry. Journal of Chemical Education, 89, 844−849.
  • Jones L. L., Jordan K. D., & Stillings N. A. (2005), Molecular visualization in chemistry education: the role of multidisciplinary collaboration. Chemistry Education Research and Practice, 6, 136-149.
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701-705.
  • Justi R. S., & Gilbert J. K. (2002). Models and modelling in chemical education. In Gilbert J., De Jong O., Justi R., Treagust D.& Van Driel J. (ed.) Chemical education: towards research-based practice (pp. 213–234), Dordrecht: Kluwer.
  • Kapıcı, H. Ö., & Savaşçı-Açıkalın, F. (2017). Fen eğitiminde ders kitapları ve çoklu gösterimler. İçinde Akçay B, (Ed.), Fen Bilimleri Eğitimi Alanındaki Öğretme ve Öğrenme Yaklaşımları (s. 227-240), Pegem A Yayıncılık: Ankara
  • Karslı, F., & Yiğit, M. (2017). Efectiveness of the REACT strategy on 12th grade students’ understanding of the alkenes concept. Research in Science & Technological Education, 35(3), 1-18. doi:10.1080/02635143.2017.1295369
  • Kumi, B. C., Olimpo, J. T., Bartlett, F., & Dixon, B. L. (2013). Evaluating the effectiveness of organic chemistry textbooks in promoting representational fluency and understanding of 2D–3D diagrammatic relationships. Chemistry Education Research and Practice, 14(2), 177-187.
  • Kurbanoglu, N. I., Taskesenligil, Y., & Sozbilir, M. (2006). Programmed instruction revisited: a study on teaching stereochemistry, Chemistry Education Research and Practice, 7, 13-21.
  • Lujan-Upton, H. (2001). Introducing stereochemistry to non-science majors, Journal of Chemical Education 78, 475-477.
  • McMurry, J. (1996).Organic chemistry. (Fourth Edition). Brooks/Cole Publishing Company: Pacific Grove, CA,
  • Mikk, J. (2000). Textbook: research and writing, Frankfurt am Main: Peter Lang GmbH.
  • Nakhleh, M. B., & Postek, B. (2008). Learning chemistry using multiple external representati-ons. In J. K. Gilbert, M. Reiner ve M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (pp. 209-232), Netherlands: Springer.
  • Nakiboğlu, C., & Yıldırım, Ş. (2018). Ortaokul fen bilimleri ders kitaplarında grafik düzenleyici kullanımının incelenmesi. Kuramsal Eğitimbilim Dergisi, UBEK-2018,1-23.
  • Nyachwaya, J. M., & Gillaspie, M. (2016). Features of representations in general chemistry textbooks: a peek through the lens of the cognitive load theory. Chemistry Education Research and Practice, 17(1), 58-71.
  • Nyachwaya, J.M., & Wood, N. B. (2014). Evaluation of chemical representations in physical chemistry textbooks. Chemistry Education Research and Practice, 15, 720--728
  • Sanger, M. J., & Greenbowe, T. J. (1999). An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. Journal of Chemical Education, 76(6), 853-860.
  • Sendur, G. (2012). Fen bilgisi öğretmen adaylarının organik kimyadaki kavram yanılgıları: alkenler örneği. Türk Fen Eğitimi Dergisi, 9(3), 160–185. Şendur, G., & Toprak, M. (2013). Öğretmen adaylarının organik kimya konularındaki anlama düzeylerinin ve kavram yanılgılarının bir analizi: alkoller örneği. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 7(1), 264-301.
  • Tulip, D., & Cook, A. (1993). Teacher and student usage of science textbooks. Reserach in Science Education, 23(1), 302–307.
  • Yager, R. E. (1983). The importance of terminology in teaching K-12 science. Journal of Reserach in Science Teaching, 20(6), 577–588.
  • Yıldırım, A. & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. (8. Baskı). Ankara: Seçkin Yayınevi
  • Zhou,Q., Wang, T., & Zheng, Q. (2015). Probing high school students' cognitive structures and key areas of learning difficulties on ethanoic acid using the flow map method. Chemistry Education Research and Practice, 16, 589-602.