Zigana (Gümüşhane, KD-Türkiye)volkanitlerinin alterasyon mineralojisi ve kütle değişimi

Doğu Karadeniz (KD-Türkiye) metalojenik provensi’nde bulunan Zigana Dağı (Gümüşhane) civarındaki Geç Kretase volkanik kayaçları yoğun hidrotermal alterasyona ve çok az yüzeysel ayrışmaya maruz kalmışlardır. Tabanda bulunan Geç Kretase bazalt, andezit ve bunların piroklastitleri yine aynı yaşlı Dasit-I ve Dasit-II olarak adlandırılan dasitik kayaçlar tarafından üstlenmektedir. Volkanik kayaçlar bimodal karakterde olup, volkanik yay ortamlarında gelişmişlerdir. Volkanitler serizit/illit-klorit fasiyesinde bozunmuşlardır ve alterasyon ürünü olarak serizit/illit, klorit, kuvars, karbonat mineralleri (ankerit ve kalsit), demir oksit ve nadiren kaolinit, simektit ve epidot içerirler. Serizitleşme/illitleşme volkanitlerinde görülen en yaygın hidrotermal alterasyon türüdür. İllitten sonra en yaygın görülen alterasyon türü klorittir. Piritleşme tüm volkanitlerde görülmekle birlikte en yaygın dasitlerde gözlenir. Bazı alanlarda, yer yer limonitleşme mevcuttur. Epidotlaşma ise nadirdir ve özellikle bazalt ve andezitlerde görülür. Hidrotermal alterasyonun bir sonucu olarak Zigana volkanitlerinde oluşan kütle kazanç ve kayıplarını hesaplamak için isocon analizi uygulanmış ve genel olarak bazalt ve andezitte %2-61 kütle kazancı, Dasit-I %71 kütle kazancı ve %42 kütle kaybı ve Dasit-II’de %44 kütle kazancı ve %32 kütle kaybı hesaplanmıştır. Dolayısıyla, ana kayacın hidrotermal alterasyonu esnasında volkanitlerde hem kütle kazancı hem de kütle kaybı meydana gelmiştir. Genellikle, az altere kayaçtan çok altere kayaca doğru illit-klorit-kaolinit artarken karbonat mineralleri azalır. Volkanitlerde, serizitleşme/illitleşme, kloritleşme ve silisleşmeye sebep olan sıvıların Cu, Pb ve Zn gibi metalleri arttırmadığı, gerçekte bu sıvıların bu metallerce fakir olduğu söylenebilir. Bu aynı zamanda onların değişik hidrotermal şartlar altında geliştiğine işaret eder.

The alteration mineralogy and mass change of the Zigana (Gümüşhane) volcanics of NE Turkey

The Late Cretaceous volcanic rocks around Zigana Mountain (Gümüşhane) in the eastern Black Sea metallogenic province in NE Turkey show intensive hydrothermal alteration but less weathering alteration. The basement of the study area is formed by Late Cretaceous basalt, andesite and their pyroclastics. These rocks are overlain by dacitic rocks of the same age, namely Dacite-I and Dacite-II. These volcanic rocks are bimodal in character and have developed in a volcanic arc environment. The volcanic rocks in the study area have been altered to the sericite/illite–chlorite facieses, and contain sericite/illite, chlorite, quartz, carbonate minerals (ankerite and calcite), iron-oxide, and rare kaolinite, smectite and epidote as the products of alteration. Sericitization/illitization is the most common type of hydrothermal alteration associated with these volcanics, and chloritization is the most common alteration type after illitization; pyritisation is seen in all volcanics, and is the most common in dacites. In some fields limonitisation is occasionally present. Epidotization is rare, and especially seen in basalt and andesite. Isocon analysis was undertaken to estimate the mass gains and losses of the Zigana Volcanics as a result of hydrothermal alteration. In general terms, the results shows that, basalt and andesite have 2-61% mass gain, Dacite-I 71% mass gain and 42 % mass loss, and Dacite-II 44% mass gain and 32% mass loss. Namely, both mass gain and mass loss occurred in the volcanics during the hydrothermal alteration of the parent materials. From less altered rock to highly altered rock there was an increase in illite-chlorite-kaolinite whereas there was a decrease in carbonate minerals. In the volcanics, fluids which cause sericitization and chloritization did not increase metals like Cu, Pb and Zn and, in fact, it can be said that these fluids are poor in point of these metals. This also shows that the metals developed under different hydrothermal conditions.

___

  • Abdioğlu, E., 2008. Kutlular (Sürmene-Trabzon) Masif Sülfit Yatağı Hidrotermal Alterasyonunun Kil Mineralojisi, Jeokimyası, Duraylı İzotop Özellikleri ve Kökeni/ (Nature and Origin of Hydrothermal Alteration of the Kutlular (Sürmene-Trabzon) Massive Sulphide Deposit, Using Clay Mineralogy, Geochemistry and Stable Isotopes). Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon, 240s.
  • Adamia, S.A., Chlehotva, M.B., Kekelia, M., Lordkipanidze, M., Shavishili, I. ve Zachariazadze, G.S. 1981. Tectonic Of The Caucaus and Adjoining Regions. Journal of Structural Geology 3, 437–44.
  • Akçay, M. ve Arar, M., 1999. Geology, mineralogy and geochemistry of the Çayeli massive sulphide ore deposit, Rize, NE Turkey. In: Stanley et al., (Eds.), Mineral Deposits: Processes to Processing. Balkema, Rotterdam, pp. 459-462.
  • Akçay, M. ve Moon, C.J., 2001. Geochemistry of pyrite-bearingand purple dacites in north-eastern Turkey: a new exploration tool for the Kuroko type deposits. In: Piestrzyski, A. (ed) Mineral Deposits at the Beginning of the 21st Century. Krakow, Poland, p. 210–213.
  • Akıncı, Ö.T., 1980. Major copper metallogenetic units and genetic igneous complexes of Turkey. In: Jankoviç, S. & Sillitoe, R. (eds), European Copper Deposits. Belgrade, Belgrade University, Faculty of Geology and Mining, 199–208.
  • Akıncı, Ö.T., 1984. The Eastern Pontide volcano-sedimantery belt and associated massive sulphide deposits, In: Dixon, J.E. and Robertson, A.H.F. (Eds.) The geological evolution of the Eastern Mediterranean. Geol. Soc. Lond. Spec. Publ., 17, 415-428.
  • Altun, Y., 1972. Geology of the Madenköy (1) area. Maden Tekik ve Arama Enstitüsü (MTA) Rept. 553, 10 p. (in Turkish).
  • Arribas, A.J.R., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson, J.F.H. (ed), Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada, Short Course 23, 419–454.
  • Arslan, M., Tüysüz, N., Korkmaz, S., and Kurt, H., 1997. Geochemistry and petrogenesis of the eastern pontide volcanic rocks, Northeast Turkey. Chemie der Erde, 57, 157-187.
  • Barrett, T.J. ve MacLean, W.H., 1991. Chemical, mass, and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, Noranda, Qebec. Econ. Geol., 86, 40-414.
  • Barrett, T.J., 1992. Mass changes in the Galapagos hydrothermal mounds: near-axial sediment transformation and mineralization. Geology 20, 1075–1078.
  • Barrett, T.J., Cattalani, S. ve MacLean, W.H., 1993. Volcanic lithogeochemistry and alteration at the Delbridge massive sulphide deposits, Noranda Quebec.Journal of Geochemical Exploration, 48, 135-173.
  • Barrett, T.J. ve MacLean, W.H., 1994. Mass Changes in Hydrothermal Alteration Zones Associated with VMS Deposits of the Noranda Area. Exploration and Mining Geology, 3, 131-160.
  • Barrett, T.J. ve Maclean, W.H., 1999. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. In:Barrie, C.T. & Hannington, M.D. (eds), Volcanic-Associated Massive Sulfide Systems: Processes and Examples in Modern and Ancient Settings. Reviews in Economic Geology 8, 101–131.
  • Bektaş, O., 1987. Volcanic belts as markers of the Mesozoic active margins of the Eurasia-Discussion. Tectonophysics, 141, 345-347.
  • Buser, S. ve Cvetic, S., 1973. Geology of the environs from the Murgul copper deposits, Turkey, MTA Bull., 81, 22- 45.
  • Callaghan, T., 2001. Geology and host-rock alteration of the Henty and Mount Julia gold deposits, Western Tasmania. Economic Geology 96,1073-1088.
  • Çağatay, M.N., 1977. Development of geochemical exploration techniques for massive sulphide ore deposits, eastern Black Sea region, Turkey. Unpub. Ph.D thesis, University of London, 364 p.
  • Çağatay, M.N. ve Boyle, D.R., 1980. Geochemical prospecting for volcanogenic sulfide deposits, eastern Black Sea region, Turkey. Jour. of Geochem. Explor., 8, 49-71,
  • Çağatay, M.N., 1993. Hydrothermal alteration associated with volcanogenic massive sulfide deposits: Examples from Turkey. Economic Geology, 88, 606-621.
  • Çelik, M., Karakaya, N. ve Temel, A., 1999. Clay minerals in Hydrothermal altered volcanic rocks, Eastern Pontides, Turkey. Clays and Clay Minerals, 77, 6, 708-717.
  • Date, J., Watanabe, Y. ve Saeki, Y., 1983. Zonal alteration around the Fukazawa Kuroko deposits, Akita Prefecture, Japan. Economic Geology Monograph 5, 365-386.
  • Dixon, J.C. ve Pereira, J., 1974. Plate tectonics and mineralization in the Tethyan Region, Min. Deposita, 9, 185-198.
  • Dulski, P., 2001. Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values. The Journal of Geostandards and Geoanalysis, 25, 87-125.
  • Eastone, C.J., Solomon, M. ve Walshe, J.L., 1987. District-scale alteration associated with massive sulphide deposits in the Mount Read volcanics, Western Tasmania. Economic Geology, 82, 1239-1258.
  • Eğin, D., 1978. Polymetallic sulphide ore deposits and associated volcanic rocks from the Harşit river area, NE Turkey. Unpub. Ph.D thesis, University of Durham, 276 p.
  • Elliot-Meadows, S. ve Appleyard, E.C., 1991. The alteration geochemistry and petrology of the Lar Lake Cu-Zn depositi, Lynn lake are, Manitoba, Canada. Economic Geology, 86, 486-505.
  • Finlow-Bates, T. ve Stumpfl, E.F., 1981. The behaviour of socalled immobile elements in hydrothermal altered rocks associated with volcanogenic submarine-exhalative oredeposits. Mineral Dep., 16, 319-328.
  • Gemmell, J.B. ve Large, R.R., 1992. Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania. Economic Geology, 87, 620-649.
  • Grant, J.A., 1986, The isocon diagram a simple solution to Gresens equations for metasomatic alteration. Econ. Geol., 81, 1976-1982.
  • Halbach, P., Pracejus, B. ve Karg, M., 2003. BANDAMIN-I project (Unpub.).
  • Hill, I.G., Worden, R.H. ve Meighan, I.G., 2000. Yttrium: the immobilitymobility transition during basaltic weathering. Geology 28, 923 926.
  • Huston, D.L., 1993. The effect of alteration and metamorphism on wall rock to the Balcooma and Dry River South volcanichosted massive sulfide deposits, Queensland, Australia. Journal of Geochemical Exploration, 48, 277-307.
  • Huston, D.L. ve Cozens, G.J., 1994. The geochemistry and alteration of the White Devil Porphyry implications to intrusion timing. Mineral Deposita, 29, 275-287.
  • Ishikawa, Y., Sawaguchi, T., Iwaya, S. ve Horiuchi, M., 1976. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism ofunderlying dacite and alteration haloes. Mining Geology 26, 105–117.
  • Jackson, M.L., 1956. Soil Chemical Analysis–Advanced Course department of Soil Science. University of Wisconsin, Madison.
  • J.I.C.A., 1985. The Republic of Turkey report on the cooperative mineral exploration of Gümüşhane Area. MTA Yayını, Ankara, 76 s.
  • Jenner, G.A., 1996. Trace elementry of igneous rock: Geochemical nomenclature and analytical geochemistry; in trace element geochemistry of volcanic rocks: Applications for massive sulfide exploration, (Ed.) D.A. Wyman, Geological Association of canada, Short Course Notes, 12, 51-77.
  • Jenner, G.J., Longerich, L.P., Jackson, S.E. ve Fryer, B.J., 1990. ICPMS a powerful tool for high precision trace-element analysis in earth sciences; evidence from analysis of selected U.S.G.S. reference samples. Chem. Geology, 83, 133-148.
  • Karakaya, N. ve Karakaya, M.Ç., 2001. Şaplıca (Şebinkarahisar,Giresun) Volkanitlerinin Hidrotermal Alterasyon Türlerinin Mineralojik ve Jeokimyasal Özellikleri. Türkiye Jeoloji Bülteni, 44/2, 75-90.
  • Karakaya, N., Karakaya M.Ç., Nalbantçılar, M.T. ve Yavuz F., 2007. Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey). Journal of Geochemical Exploration, 93, 35-46.
  • Kunze, G.W., 1965. Pretreatments for mineralogical analysis. Pp. 568–577 in: Methods of Soil Analysis Part I. Physical and mineralogical properties including statistics of measurement and sampling (C.A. Black, editor). Agronomy Society of America Inc., Madison, Wisconsin.
  • Large, R.R., 1992. Australian volcanic-hosted massive sulphide deposits: features, styles, and genetic models. Economic Geology 87, 549–572.
  • Large, R.R., Allen, R.L., Blake, M.D. ve Herrmann, W., 2001. Hydrothermal Alteration and Volatile Element Halos for the Rosebery K Lens Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania. Economic Geology, 96, 1055-1072.
  • Lentz, D.R., 1996. Recent advances in lithogeochemical exploration for massive-sulphide deposits in volcanosedimentary environments: Petrogenetic, chemostratigraphic, and alteration aspects with examples from the Bathurst camp, New Brunswick. New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division Mineral Resource, 96-1, 73-119.
  • Lentz, D.R., 1999. Petrology, geochemistry, and oxygen isotope interpretation of felsic volcanic and related rocks hosting the Brunswick 6 and 12 massive sulfide deposits (Brunswick Belt), Bathurst Mining Camp, New Brunswick, Canada. Economic Geology, 94, 57-86.
  • Lesher, C.M., Goodwin, A.M., Campbell, I.H. ve Gorton, M.P., 1986. Trace elements of or-associated and barren felsic metavolcanic rocks in the Superior Province, Canada. Canadian Jour. Earth. Sci., 23, 222-241.
  • Longerich, H.P., Jenner, G.A., Fryer, B.J. ve Jackson, S.E., 1990. Inductively coupled plasma mass spectrometric analysis of geological samples: Case studies. Chemical Geology, 83, 105- 118.
  • MacLean, W.H. ve Kranidiotis, P., 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82, 951-962.
  • MacLean, W.H., 1990. Mass change calculations in altered rock series. Mineral Deposita, 25, 44-49.
  • MacLean, W.H. ve Hoy, L.D., 1991. Geochemistry of hydrothermal altered rocks at the Horne Mine, Noranda, Quebec. Economic Geology, 86, 3, 506-528.
  • MacLean, W.H. ve Barrett, T.J., 1993. Lithochemical techniques using immobile elements. Journal of Geochemical Exploration, 48, 109-133.
  • McClay, K.R. ve Ellis, P.G., 1984. Deformation of pyrite. Economic Geology, 79, 400-403.
  • Mehra, O.P. ve Jackson, M.L., 1960. Iron oxides removed from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.
  • Myers, R.E. ve MacLean, W.H., 1983. The geology of the New Insco copper deposit, Noranda District, Quebec. Canadian Jour. Earth. Sci., 20, 1291-1304.
  • Nebioğlu, T.Y., 1975. Geologic map of the Madenköy (1) Area (1: 1000 Scale) MTA Map 31134.
  • Nesbitt, H.W. ve Young, G.M., 1982. Early Proterozoic Climates and Plate Motions İnferred from Major Element Chemistry of Lutites. Nature, 299, 715-717.
  • Nesbitt, H.W. ve Young, G.M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based upon Thermodynamic and Kinetic Considerations. Geochim. Cosmochim. Acta, 48, 1523-1534.
  • Okay, A.I. ve Şahintürk, O., 1997. Geology of the eastern Pontides, In Robinson A.G. (Ed), Regional and Petroleum Geology of the Black Sea and Surrounding Region. AAPG Memoir, 68, 291-311.
  • Pearce, J.A, 1996. A user’s guide to basalt discrimination diagrams. In: Wyman, D. A., (Ed.), Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12, pp. 79-113.
  • Pejatoviç, S., 1979. Metallogeny of the Pontid-type massive sulfide deposits. Spec. Publ. No: 177, MTA Yayını, Ankara, 98pp.
  • Sato, T., 1977. Kuroko deposits: their geology, geochemistry and origin. In: Volcanic Processes in Ore Genesis. Geological Society of London, Special Publications 7, 153–161.
  • Schardt, C., Cooke, D.R., Gemmell, J.B. ve Large, R.R., 2001. Geochemical Modeling of the Zoned Footwall Alteration Pipe, Hellyer Volcanic-Hosted Massive Sulfide Deposits, Western Tasmania, Australia. Economic Geology 96, 1037–1054.
  • Schneieder, H.-J., Özgür, N. ve Palacios, C.M., 1988. Relationship between alteration, rare earth elements distribution, and mineralization of the Murgul copper deposits, northeastern Turkey. Economic Geology, 83, 1238-1246.
  • Shriver, N.A. ve MacLean, W.H., 1993. Mass, volume and chemical changes in the alteration zone at the Norbec mine, Noranda, Quebec. Min. Deposita, 28, 157-166.
  • Sillitoe, R.H., 1993. Epithermal models: genetic types, geometrical controls and shallow features. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. ve Duke, J.M. (eds), Mineral Deposit Modeling. Geological Association of Canada, Special Paper 40, 403–417.
  • Sipahi, F. ve Sadıklar, M.B., 2004. Chemical properties and discrimination of dacites in Zigana area (NE-Turkey) by using trace elements diagrams. Eur. J. Mineralogy, Karlsruhe-Deutschland, Abstract, 16/1, pp. 134.
  • Sipahi, F., 2005. Zigana Dağı (Torul–Gümüşhane) volkanitlerindeki hidrotermal ayrışmaların mineraloji ve jeokimyası (mineralogy and Geochemistry of Hydrothermal Alterations in Zigana Mountain (Torul-Gümüşhane) volcanics). Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon, 229 s.
  • Sipahi, F. ve Sadıklar, M.B., 2006. Discrimination of dacites with trace elements (Zigana, NE-Turkey). Geochimica et Cosmochimica ACTA, 16 th Goldschmidt Conference Abstracts, 70, 18/1:1188, August-September 2006, s. A593.
  • Şengör, A.M.C. ve Yılmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach, Tectonophysics, 75, 181-241.
  • Taylor, S.R. ve McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford, 312 pp.
  • Tüysüz, N., 1995. Lahanos (Espiye-Giresun) masif sülfit yatağına ait cevher mineralleri ve dokularının cevher oluşumu açısından incelenmesi. Geosound/Yerbilimleri, 26, 79-92.
  • Tüysüz, N., 1999. Artvin-Ordu arasındaki masif sülfit bakır, kurşun, çinko yataklarının jeokimyasal yöntemlerle araştırılması. Sonuç Raporu, KTÜ Araştırma Fonu Başkanlığı, Proje Kodu: 96.12.005.9.
  • Tüysüz, N., 2000. Geology, lithogeochemistry and genesis of the Murgul massive sulfide deposit, NE-Turkey. Chemie der Erde, 60, 231-250.
  • Urabe, T. ve Marumo, K., 1991. A new model for Kuroko-type deposits of Japan. Episodis 14, 246-251.
  • Van Gerven, M., 1995. Geochemische Nebengesteinsalterationen und Erfassung Signifikanter Zonierungen im Bereich des Jade-Erzfeldes, Okinawa-Trog, Japan, Dipl.-Geol., Freie Universitäte, Rohstoff- und Umweltgeologie, Berlin, 186 s.
  • Winchester, J.A. ve Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.