Türkiye'nin Akdeniz sahillerindeki yalıtaşlarının holosen deniz düzeyi oynamaları ve tektonizma açısından önemi

Akdeniz kıyısındaki Finike ile Suriye sınırı arasında kalan kıyı şeridi, kum ve çakıl boyutlu pekişmemiş sedimanların gelgit arası bölgede bulunan karbonat çimento sayesinde çok hızlı bir şekilde taşlaşması sonucu oluşan yalıtaşlarının gözlendiği bir bölgedir. Bu çalışma kapsamında çeşitli derinliklerde bulunan yalıtaşlarından 14C yaş tayinleri elde edilmiş ve gözlenen diğer jeomorfolojik, jeolojik ve arkeolojik veriler aracılığı ile Akdeniz kıyısının son 5000 senelik deniz seviyesi değişimleri zaman ve mekan boyutunda ortaya konulmuştur. Çalışma alanı aynı yaş gurubuna ait benzer seviyedeki yalıtaşlarının ve dalga aşındırma oyuk ve düzlüklerinin gruplanması temeline dayanan 5 bölgeye (I-V) ayrılmıştır: I) En batıdaki Finike yalıtaşı ile Andriake ve Kekova Batıkşehir harabelerinin bulunduğu bölüm Roma dönemi sonrası meydana gelen depremler sonucu bugün -1.5 m ile -4 m kadar deniz altında bulunmaktadır. II) Finike-Antalya-Çimtur arasında -0.8 m ile -2.2 m deniz altında bulunan ve 3 ayrı nesile ait yalıtaşı seviyelerinden en üstte olanı M.S. 4-7 yy arasında bugünkü konumuna ulaşmıştır. III) İncekum ile Adana’nın güneyindeki Karataş Osmaniye Fay Zonu arasında kalan bölgede yalıtaşları deniz seviyesinin biraz üstündedir. Ayrıca dalga aşındırma düzlüklerinin İncekum’da günümüzden 1815-1545 yıl kadar önce 0.5 m ile 1.2 m arasında yükseldikleri bilinmektedir. IV) İskenderun Körfezi’nin güney ve kuzeyi ile sınırlı bu bölgede iki değişik nesile ait yalıtaşları (0.3 m ile -0.8 m (M.S. 4-7 yy arası) ve -0.7 m ile -1.7 m arası) bulunmaktadır. V) İskenderun Körfezi’nin güneyinden Suriye sınırına kadar olan sahil şeridinde yalıtaşları gözlenmemekte ancak 3 ayrı deniz seviyesine ait dalga oyukları güncel deniz seviyesinin 2.9 m, 1.4 m ve 0.8 m kadar üzerinde bulunmaktadırlar. Bunlardan en üstte olanının günümüzden 2500 ± 100 yıl, en aşağıda olanının ise M.S. 5-6 yy’da bugünkü konumlarına yükseldikleri bilinmektedir. Çalışma alanına zaman boyutunda bakıldığında ise toplam 4 değişik deniz seviyesi sabitlenmesi görülmektedir: 1) En eski deniz seviyesi (?Orta Holosen) -3 m (±0.5 m) civarındaki yalıtaşları ile temsil edilir. 2) Deniz seviyesinin ikinci defa durağan hale geldiği M.Ö. 5-7 yy arasında oluşan yalıtaşları da bugün denizin -2 m (±0.5 m) kadar altındadırlar. V. Bölge’de 2 m ile 3 m’de bulunan dalga oygu izleri de yine bu zaman aralığına aittirler. 3) Üçüncü deniz seviyesi sabitlenmesi ve bunun sonucu olarak bugün II. Bölge’deki Kemer’de ve IV. Bölge’deki Gözcüler’de -0.4 m (±0.5 m) derinlikte bulunan yalıtaşlarının oluşumu M.S. 4-6. yy’lar arasında gerçekleşmiştir. Bugün deniz altında kalmış kimi Roma dönemi sonrası yapıları (I. Bölge) ve II. Bölge’de -0.5 m ile -1.2 m deniz altında bulunan yalıtaşları ile V. Bölge’de 0.8 m deniz üstünde bulunan dalga aşındırma oyuklarının da M.S. 4-6 yy’lar arasında bugünkü konumlarına geldikleri bilinmektedir. III. Bölge’de 0.5 civarında bulunan aşındırma düzlüğü ise M.S. 2-6 yy’lar arasına tarihlenmektedir. 4) Güncel deniz seviyesine en geç Selçuklu (M.S. 12 yy) ve olasılıkla Erken Bizans döneminden sonra (M.S. 4-7 yy) ulaşıldığı tespit edilmiştir. Toplanan veriler çalışma alanında son 5000 senelik dönemde deniz seviyesinde meydana gelmiş değişimlerin nedenlerinin iklimsel ve/veya glasyo-östatik olmasından ziyade tektonik kaynaklı olduklarının kanıtı olarak yorumlanmıştır.

Beachrock formations on the Mediterranean Coast of Turkey: implications for Holocene sea level changes and tectonics

Beachrocks, which rapidly form along intertidal zones by early carbonate cementation, can be used in Holocene sea level change and neotectonic studies, as their formation requires vertical stabilization of the shoreline. In this paper, three generations of beachrocks at different depths between Finike and the Syrian border are 14C dated and a mid-Holocene to recent sea level change history is tentatively proposed. The beachrocks and raised shorelines in the study area are geographically subdivided into five areas: I) The westernmost beachrock in Finike Bay and Roman ruins of Andriake and Batıkşehir which are found submerged -1.5 m to - 4 m below after post-Roman earthquakes. II) Three beachrocks levels observed between Finike-Antalya and Çimtur, the uppermost beachrock indicating sea level stabilization at c. AD 400-700. III) Between İncekum and Karataş-Osmaniye Fault Zone where beachrocks above sea level are also observed. In İncekum surf benches between 0.5 m and 1.2 m were previously dated as 1815 BP to 1545 BP. IV) The southern and northern part of İskenderun Bay limits this area. Two generations of beachrocks, corresponding to two fossil intertidal zones are distinguished here: the first between 0.3 m and -0.8 m (c. AD 400-700) and the second between -0.7 m and -1.7 m. V) No beachrocks are present along the Levant coast of Turkey. However two erosional notches were previously dated as 2500 ± 100 BP (2.9 m) and c. AD 500-600 (0.8 m). A possible third notch at 1.4 m is undated. Four relative sea level stands are recognized in the study area: 1) The earliest sea level (?mid- Holocene) is represented by beachrocks at -3 m (±0.5 m). 2) The second stabilization of the sea level occurred c. AD 500-700 and is represented by beachrocks at -2 m (±0.5 m). The raised shoreline represented by an erosional notch at 2 m and 3 m near Samandağ (Area V) also belongs to this period.3) The third stabilization of sea level and the formation of beachrocks at -0.4 m (±0.5 m) as in Kemer (Area II) and Gözcüler (Area IV) date back to c. AD 400-600. Several Roman ruins (Area I) and a notch at 0.8 m (Area V) are known to have been raised to their present positions between c. AD 400-600. The bench at 0.5 m (Area III) is known to have developed around AD 200-600. 4) The sea level reached its present position at the latest after the Selchukid era (c. AD 1200) and most probably after the Early Byzantine period (c. AD 400-700). Our data indicate that the major causes of sea level changes observed along the Turkish Mediterranean coast during the last 5000 years can be attributed to local tectonics rather than to climate and/or glacio-eustacy.

___

  • Akay, E., Uysal, S., Poisson, A., Cravatte, J. & Müller, C., 1985. Antalya Neojen havzasının stratigrafisi. Türkiye Jeoloji Bülteni, 28, 2, 105-119.
  • Amieux, P., Bernier, P., Dalongeville, R., de Medwecki, V., 1989. Cathodoluminescence of carbonatecemented Holocene beachrock from the Togo coastline (West Africa): an approach to early diagenesis. Sedimentary Geology, 65, 261-272.
  • Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., Orru, P., Solinas, E., Gaspari, A., Karinja, S., Kovacic, V. & Surace, L. 2007. Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26, 2463-2486.
  • Avşarcan, B., 1997. Yalıtaşı oluşumu ile ilgili kuramlar ve Türkiye kıyılarındaki yalıtaşlarının bazı özellikleri. İ. Ü. Coğrafya Dergisi, 5, 259-282.
  • Beaudoin, R., 1954. Géologie des sables alvéolaires de l'Ancien Monde. Bulletin de la Société Géologique de France, Série 6, IV, 571-484.
  • Beauford, F., 1818. Karamania, or a brief description of Asia Minor and the Remains of Antiquity, R. Hunetr, London.
  • Bener, M., 1974. Antalya-Gazipaşa Kıyı Kesiminde Yalıtaşı Oluşumu. İ.Ü. Edebiyat Fak. Yayınları. No: 1758.
  • Bernier, P., Bonvallot, J., Dalongeville, R. & Prieur, A., 1990. Le beach-rock de Temae (Ile de Moorea-polynésie française): signification géomorphologique et processus diagénétiques. Zeitschrift für Geomorphologie N.F, 34 (4), 435-450.
  • Bernier, P., Guidi, J.-B. & Bottcher, M.E., 1997. Coastal progradation and very early diagenesis of ultramafic sands as a result of rubble discharge from asbestos excavations (northern Corsica, western Mediterranean). Marine Geology, 144 (13), 163-175.
  • Bessac, J.-C., 1988. Problems of identification and interpretation of tool marks and ancient marbles and decorative stones. In: Herz, N and Waelkens, M. (eds), Classical Marble, Geochemistry, Technology and Trade.
  • Bezerra, F.H.R., Amaral, R.F., Lima-Filho, F.P., Ferreira, A.V., Sena, E.S. & Diniz, R.F., 2004. Beachrock fracturing in Brazil. J. Coastal Research, 42, 169-182.
  • Blackman, D.J., 1982a. Ancient harbours in the Mediterranean, part 1. International Journal of Nautical Archaeology, 11(2), 79-104.
  • Blackman, D.J., 1982b. Ancient harbours in the Mediterranean, part 2. International Journal of Nautical Archaeology, 11(3), 185-211.
  • Boulton, S.J. & Robertson, A.H.F., 2007. The Miocene of the Hatay area, S Turkey: Transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Southern Neotethys Ocean. Sedimentary Geology, 198 (1-2), 93-124.
  • Brattström, H., 1992. Marine biological investigations in the Bahamas. Littoral zonation at three Bahamian beachrock localities. Sarsia, 77, 81-109.
  • Bricker, O.P., 1971. Introduction: beachrock and intertidal cement. In: Bricker, O.P. (ed), Carbonate Cements. John Hopkins Press, Baltimore, M.D., 1-3.
  • Bürger, D., 1990. The travertine complex of Antalya Southwest Turkey. Zeitschrift für Geomorphologie Supplementary Bulletin, 77, 25-46.
  • Cayeux, L., 1914. Les déplacements de la mer à l'époque historique. Revue scientifique, 19, 577-586.
  • Chivas, A., Chappell, J., Polach, H., Pillans, B. & Flood, P., 1986. Radiocarbon evidence for the timing and rate of island development, beach-rock formation and hosphatization at Lady Elliot Island, Queensland, Australia. Marine Geology, 69, 273-287.
  • Çiner, A., Karabıyıkoğlu, M., Monod, O., Deynoux, M. & Tuzcu, S., 2008. Late Cenozoic sedimentary evolution of the Antalya Basin, Southern Turkey. Turkish Journal of Earth Sciences, 17, 1-42.
  • Cloud Jr., P.E., 1952. Preliminary report on geology and marine environments of Onotoa Atoll, Gilbert Islands. Atoll Res. Bull., 12, 1-73.
  • Cooper, J.A.G., 1991. Beachrock formation in low latitudes: implications for coastal evolutionary models. Marine Geology, 98 (1), 145-154.
  • Dalongeville, R. & Sanlaville, P., 1979. Rivages holocènes de la Turquie méridionale. Bulletin du Laboratoire Rhodanien de Géomorphologie, 4-5, 5-15.
  • Dalongeville, R. & Sanlaville, P., 1984. Essai de synthèse sur le beach-rock. In: Le beachrock, actes du colloque de Lyon. Travaux de la Maison de l’Orient, 8, De Boccard, Paris, 161-167.
  • Desruelles, S., Fouache, E., Dalongeville, R., Çiner, A., Pavlopoulos, K., Koşun, E., Coquinot, Y. & Potdevin, J.-L., 2006. New data on the sea level rise since the mid- Holocene in the East Mediterranean (Greece and Turkey): the submerged beachrock lines. Colloque SEALAIX’06. Sea level changes: Records, Processes and Modeling, CEREGE, Giens (France), 25- 29 septembre 2006.
  • Desruelles, S., Fouache, E., Çiner, A., Dalongeville, R., Pavlopoulos, K., Koşun, E., Coquinot, Y. & Potdevin, J.L., 2009. Beachrocks and sea level changes since Mid-Holocene: Comparison between the insular group of Mykonos-Delos-Rhenia (Cyclades, Greece) and the southern coast of Turkey. Global and Planetary Change, 66, 19-33.
  • Deynoux, M., Çiner, A., Monod, O., Karabıyıkoğlu, M., Manatschal, G. & Tuzcu, S., 2005. Facies architecture and depositional evolution of alluvial fan to fan-delta complexes in the tectonically active Miocene Köprüçay Basin, Isparta Angle, Turkey, in: Kelling, G., Robertson, A.H.F., van Buchem, F. (Eds.), Cenozoic Sedimentary Basins of South Central Turkey. Sedimentary Geology, 173, 1.4, 315-343.
  • Dunham, R.J., 1970. Keystone vugs in carbonate beach deposits. Bull. Amer. Assoc. Petroleum Geol., 45, 845s.
  • Easton, W.H., 1974. An unusual inclusion in beachrock. J. Sediment. Petrol. 44, 693- 694.
  • Emery, K.O., Tracey, J.I.J. & Ladd, H.S.A., 1954. Geology of Bikini and nearby atolls. U.S. Geological Survey Prof. Pap. 260 (260A), 265.
  • Erinç, S., 2001. “Jeomorfoloji II” (Güncelleştirenler T.A. Ertek & C. Güneysu), DER Yay., Istanbul.
  • Erol, O., 1963. Observations on Anatolian coastline changes during the Holocene. Coğrafya Araştırmaları Dergisi, 2, 89-102.
  • Erol, O., 1971. Gelibolu Yarımadasında Yalıtaşı Teşekkülleri. Ankara Üniversitesi Coğrafya Araştırma Dergisi, 3-4, 1-12.
  • Erol, O., 1983. Historical changes on the coastline of Turkey. In: C.F.E. Bird & P. Fabbri (eds). Coastal Problems in the Mediterranean Sea, Proc. Symp. Venice, 10-14 May 1982, I.G.U. Comm. on the Coastal Env., 95-108.
  • Ertek, T.A., 2001. Sahilköy-Şile Arasındaki Kıyılarda Genç Tektonik Hareketler ve Yalıtaşı Oluşumu. Türkiye Kuvaterneri Çalıştayı, ITÜ Avrasya Yerbilimleri Enstitüsü, Istanbul, 24-31.
  • Ertek, T.A. & Erginal, A.E., 2003. “Physical properties of beachrocks on the coasts of Gelibolu Peninsula and their contribution to the Quaternary sea level changes. (Gelibolu Yarımadası kıyılarındaki yalıtaşlarının fiziksel özellikleri ve Kuaterner deniz seviyesi degişimlerine katkısı). Turkish Journal of Marine Science, 9, 1, 31-49.
  • Erginal, A.E., Kıyak, N.G., Bozcu, M., Ertek, A., Güngüneş, H., Sungur, A., & Türker, G., 2008. On the origin and age of the Arıburnu beachrock, Gelibolu Peninsula, Turkey. Turkish Journal Earth Sciences, 17, 803-819.
  • Ertek, T.A. & Erginal, A.E., 2005. K.K.T.C. Kıyılarında Yalıtaşı Oluşumları. TURQUA, Turkiye Kuvaterner Sempozyumu V, 02-03 Haziran 2005, Bildiriler, I.T.U. Avrasya Yerbilimleri Enst., Istanbul, 71-72.
  • Flecker, R., Poisson, A. & Robertson, A.H.F., 2005. Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional eastern Mediterranean context. Sedimentary Geology, 173, 1.4, 277-314.
  • Flemming, N.C., 1969. Archaeological evidence for eustatic change of sea level and earth movements in the Western Mediterranean during the last 2000 years. Geological Society of America Special Paper, Boulder, 109, 125s.
  • Fouache, É. & Dalongeville, R., 1998. De la nécessaire prise en compte des sédiments dans la connaissance des variations récentes de la ligne de rivage. Exemples d’Aghios Andreas (Grece) et de Guverdjine Kaya (Syrie). Géomorphologie: relief, processus, environnement, 2, 131- 140.
  • Fouache, É., Sibella, P. & Dalongeville, R., 1999. Holocene variations of the shoreline. between Antalya and Andriake (Turkey). International Journal of Nautical Archaeology, 28(4), 305-318.
  • Fouache, É., Sibella, P. & Dalongeville, R., 2005a. Harbours and Holocene variations of the shoreline between Andriake and Alanya (Turkey). Méditerranée, 104, 1.2, 87-94.
  • Fouache, E., Desruelles, S., Pavlopoulos, K., Dalongeville, R., Coquinot, Y., Peulvast, J.-P. & Potdevin, J.-L., 2005b. Beachrocks as indicators of Late Holocene sea-level rise in Mykonos, Delos and Rhenia Islands (Cyclades, Greece). Zeitschrift für Geomorphologie. Supplementary volume, 137, 37-43.
  • Frankel, E., 1968. Rate of formation of beach rock. Earth Planet. Sci. Lett., 4, 439-440. Ginsburg, R.N., 1953. Beach rock in South Florida. Journal of Sedimentary Petrology, 23, 85-92.
  • Gischler, E. & Lomando, A.J., 1997. Holocene cemented beach deposits in Belize. Sedimentary Geology, 110(3-4), 277-297.
  • Goudie, A. 1966. A preliminary examination of the beach conglomerates of Arsuz, South Turkey. Geographical Articles, Geogr. Depart. Cambridge University 6, 6-9.
  • Hanor, J.S., 1978. Precipitation of beachrock cements: mixing of marine and meteoric waters vs. CO2 degassing. Journal of Sedimentary Petrology, 48, 489-501.
  • Heckel, P.H., 1983. Diagenetic model for carbonates rocks in Midcontinent Pennsylvanian eustatic cyclothems. Journal of Sedimentary Petrology, 53, 3, 733-759.
  • Hopley, D. 1986. Beachrock as a sea-level indicator. In: D. van de Plassche (ed), Sea- Level Research: a: manual for the collection and evaluation of data, Geo Books, Norwich, 157-173.
  • Hughen, K.A., Baillie, M.G.L., Bard, E., Beck, A.J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht & J., Weyhenmeyer, C.E., 2004. MARINE04 marine Radiocarbon age calibration 26-0 ka BP. Radiocarbon, 46, 1059-1086.
  • İnandık, H., 1971. Deniz ve Kıyı Coğrafyası. İ. Ü. Coğrafya Enst. Yayın., 47.
  • Karabıyıkoğlu, M., Çiner, A., Monod, O., Deynoux, M., Tuzcu, S. & Örçen, S., 2000. Tectono-sedimentary evolution of the Miocene Manavgat Basin, Western Taurids, Turkey, in: Bozkurt, E., Winchester, J.A., Piper, J.A.D. (Eds.), Tectonics and magmatism in Turkey and the surrounding area. Geological Society of London Special Publication, 173, 271-294.
  • Kayan, İ., 1988. Late Holocene sea-level changes on the Western Anatolian coast. In: Quaternary Coastal Changes. P.A. Pirazzoli, & D.B. Scott (eds.). Palaeogeography, Palaeoclimatology, Palaeoecology 68, 205-218.
  • Kayan, İ. 1993. Kuvaterner çalışmalarına İznik Gölü örneği. Türkiye Kuvaterneri, İTÜ, Maden Fak. Jeoloji Mük.Böl. TÜBİTAKGlotek, 8-11.
  • Kelletat, D., 1975. Eine eustatische Kurve für das jüngere Holozän, konstruiert nach Zeugnissen früherer Meeresspiegelstände im östlichen Mittelmeergebiet. Neue Jahrbücher für Geologie und Paläontologie, 6, 360-374.
  • Kelletat, D., 2006. Beachrock as sea-level indicator? Remarks from a geomorphological point of view. J. Coastal Research. 22 (6), 1555-1564.
  • Kelletat, D. & Kayan, İ., 1983. Alanya batısındaki kıyılarda ilk 14C tarihlendirmelerinin ışığında Geç Holosen tektonik hareketleri. Türkiye Jeoloji Bülteni, 26, 83-87.
  • Kneale, D. & Viles, H.A., 2000. Beach cement: incipient CaCO3 cemented beachrock development in the upper intertidal zone, North Uist, Scotland. Sedimentary Geology, 132, 165-170.
  • Koşun, E., Sarıgül, A., ve Varol, B. 2005. Antalya Tufalarının Litofasiyes Özellikleri. MTA Dergisi, 130, 57-70.
  • Laborel, J. & Laborel-Deguen, F., 1994. Biological indicators of relative sea-level variations and co-seismic displacements in the Mediterranean region. J. Coastal Research, 10, 395-415.
  • Lambeck, K., 2005. External Geophysics, climate and environment (Climate). Sea-level change through the last glacial cycle: geophysical, glaciological and palaeogeographic consequences. C. R. Geoscience, 336 (2004) 677-689
  • Lambeck, K., 2002. Sea level change from mid Holocene to Recent time: an Australian example with global implications. In: Ice Sheets, Sea Level and the Dynamic Earth, Geodynamics Series, 29. American Geophysical Union, Washington, DC, 33- 50.
  • Lambeck, K. & Purcell, A., 2005. Sea level change in the Mediterranean Sea since the LGM: model predictions for tectonically stable areas. Quaternary Science Reviews, 24, 1969-1988.
  • Longman, M. W., 1980. Carbonate diagenetic textures from nearsurface diagenetic environments. Bulletin of the American Assoc. of Petroleum Geologists, 64, 461- 487.
  • Mater, B, Turoğlu, H., Uludağ, M., Yıldırım, C. & Cürebal, I., 2001. Manyas ve Uluabat Göllerinin Kuaternerdeki Evrimi ve Sonuçları: I.Ü. Araştırma Fonu Proje No:1186/070998, Istanbul.
  • Matthews, R.K., 1971. Diagenetic environments of possible importance to the exploration of cementation fabric in subaerially exposed carbonate sediments. In: Bricker, O.P. (Ed.), Carbonate Cements. Johns Hopkins Press, Baltimore, 127-132.
  • Maxwell, W.G.H., 1962. Lithification of carbonate sediments in the Heron IslandReef,GreatBarrier Reef. J.Geol. Soc. Aust., 8, 217-238.
  • Meriç. E., Yanko, V. & Avşar, N., 1995. İzmit Körfezi (Hersek Burnu-Kaba Burun) Kuvaterner istifinin foraminifer faunası. İzmit Körfezi Kuvaterner istifi (Ed. E. Meriç), 105-151.
  • Meyers, J.H., 1987. Marine vadose cementation by cryptocrystalline magnesian calcite Maui, Hawaii. J. Sedimentary Petrology, 57, 558-570.
  • Milliman, J.D. 1974. Marine Carbonates. Springer-Verlag, Berlin, 375s.
  • Moore, C.H., 1973. Intertidal carbonate cementation Grand Cayman, West Indies. J. Sedimentary Petrology 43, 591-602.
  • Morhange, C., Pirazzoli, P.A., Marriner, N., Montaggioni, L. & Nammour, T., 2006. Late Holocene relative sea-level changes in Lebanon, Eastern Mediterranean. Marine Geology, 230, 99-114.
  • Nakada,M. & Lambeck, K., 1988. The melting history of the late Pleistocene Antarctic ice sheet. Nature, 333,36-40.
  • Négris, P., 1903. Régression et transgression de la mer depuis l’époque glaciaire jusqu’à nos jours. Revue Universitaire des Mines, 3, 249-281.
  • Nesteroff, W.D., 1956. Le substratum organique dans les dépôts calcaires; sa signification. Bull. Soc. Geol. France, 6, 381-389.
  • Neumeier, U., 1998. Le rôle de l’activité microbienne dans la cimentation précoce des beachrocks (sédiments intertidaux). Terra environ., 12, 1-183.
  • Neumeier, U., 1999. Experimental modelling of beachrock cementation under microbial influence. Sedimentary Geology, 126 (1-4), 35-46.
  • Okay, A. & Özgül, N., 1984. HP-LT metamorphism and the structure of Alanya Massif, in: Dixon, J.E., Robertson, A.H.F. (Eds.), The geological evolution of the Eastern Meditterranean. Geological Society of London Special Publication, 17, 429- 440.
  • Pentecost, A. & Riding, R., 1986. Calcification in cyanobacteria. In: Riding, R. (Ed.), Biomineralization in Lower Plants and Animals.
  • Pirazzoli, P.A., 1986. The Early Byzantine Tectonic Paroxysm. Z. Geomorphol., Suppl.bd, 62, 31-49.
  • Pirazzoli, P.A. Laborel, P, J., Saliege, J.F., Erol, O., Kayan, İ. & Person, A., 1991. Holocene raised shorelines on the Hatay coasts (Turkey): Palaeoecological and tectonic implications, Marine Geology, 96, 295- 311.
  • Pirazzoli, P.A., Stiros, S.C., Laborel, J., Laborel- Deguen, F., Arnold, M., Papageorgiou, S. & Morhange, C., 1994. Late Holocene shoreline changes related to palaeoseismic events in the Ionian Islands (Greece). Holocene, 4, 397-405.
  • Pirazzoli, P. A., Laborel, J. & Stiros, S. C., 1996. Earthquake clustering in the Eastern Mediterranean during historical times. J. Geophys. Resarch, 101 (B3), 6083-6097.
  • Pirazzoli, P.A., 2005. A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea level histories from the Mediterranean area. Quaternary Science Reviews, 24, 18-19, 1989-2001.
  • Poisson, A. 1977. Recherches géologiques dans les Taurides occidentales (Turquie). Ph.D. thesis, Université Paris Sud-Orsay, 795s (yayınlanmamış).
  • Poisson, A., Wernli, R., Sağular, E.K. & Temiz, H., 2003. New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey consequences for the Antalya Basin and the Eastern Mediterranean. Geological Journal, 38, 311-327.
  • Purser, B.H., 1980. Sédimentation et diagenèse des carbonates néritiques récents, tome 1. Editions Technip, Paris, 366 s.
  • Rey, D., Rubio, B., Bernabeu, A.M. & Vilas, F., 2004. Formation, exposure, and evolution of a high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain). Sedimentary Geology 169 (1-2), 93-105.
  • Robertson, A.H.F., 2000. Mesozoic-Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey, in: Bozkurt, E., Winchester, J.A., Piper, J.A.D. (Eds.), Tectonics and magmatism in Turkey and the surrounding area. Geological Society of London Special Publication, 173, 97-138.
  • Russell, R.J., 1959. Caribbean beach rock observation. Zeitshrift für Geomorphol., 3, 227-236.
  • Şafak, Ü., Kelling, G., Gökçen, N. & Gürbüz, K., 2005. The mid-Cenozoic succession and evolution of the Mut Basin, southern Turkey, and its regional significance. Sedimentary Geology, 173 (1-4), 121-150.
  • Şaroğlu, F., Emre, Ö. & Kuşçu, İ., 1992. Türkiye diri fay haritası. MTA yayını, Ankara
  • Sanlaville, P., 1977. Étude géomorphologique de la région littorale du Liban. Thèse doctorat d'État, Université de Brest, Publ. Univ. Libanaise, Beyrouth, 2, 859 s.
  • Sanlaville, P., Dalongeville, R., Bernier, P. & Evin, J., 1997. The Syrian coast: a model of Holocene coastal evolution. J. Coastal Research, 13 (2), 385-396.
  • Schmalz, R.F., 1971. Formation of beachrock at Eniwetok Atoll. In: Bricker, O.P. (Ed.), Carbonate Cements. Johns Hopkins Press, Baltimore, 17-24.
  • Spratt, T. & Forbes, E., 1847. Travels in Lycia, Milas and the Cibyratis, II-John van Voorst, Paternoster Row, London.
  • Stiros, S.C., 2001. The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries in the Eastern Mediterranean: a review of historical and archaeological data. J. Structural Geology, 23, 545-562.
  • Stiros, S.C., Laborel, J., Laborel-Deguen, F. Papageorgiou, S. Evin, J. & Pirazzoli P.A., 2000. Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece, Marine Geology, 170, 41-58.
  • Taillefer, F., 1964. Morphologie littorale et grès de plage à Viranşehir près de Mersin (Turquie). Revue géographique de l’Est, 4, 393-398.
  • Thommeret, Y., Thommeret, J., Laborel, J., Montaggioni, L. F. & Pirazzoli, P. A., 1981. Late Holocene shoreline changes and seismo-tectonic displacements in Western Crete (Greece): Zeitschr. f. Geomorph., N.F, Suppl. Bd., 40, 127-149.
  • Vieira, M.M. & Ros, L.F.D., 2007. Cementation patterns and genetic implications of Holocene beachrocks from northeastern Brazil. Sedimentary Geology, 192 (3-4), 207-230.
  • Vousdoukas, M.I., Velegrakis, A.F. & Plomaritis, T.A., 2007. Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth Science Review., 85, 23-46.
  • Webb, G.E., Jell, J.S., Baker, J.C., 1999. Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: implications for the origin of microcrystalline beachrock cement. Sedimentary Geology, 126, 317- 334.
  • Yaltırak, C., Sakınç, M., Aksu, A.E., Hiscott, R.N., Galleb, B., Ülgen, U.B., 2002. Late Pleistocene uplift history along the outhwestern Marmara Sea determined from raised coastal deposits and global sea-level variations. Marine Geology, 190 (1-2), 283-305.
  • Yetiş, C., Kelling, G., Gökçen, S.L. & Baroz, F., 1995. A revised stratigraphic frame for later Cenezoic sequences in the northeastern Meditterranean region. Geologische Rundschau, 84, 794-812.