Karakaya karmaşığı'nın düşük dereceli metamorfk tarihçesine kloritmineralojisi ve jeokimyası ile yaklaşımlar

Karakaya Karmaşığına ait farklı tektonik konum ve evrime sahip birimlerde yaygın olarak klorit mineralleribulunmaktadır. Bu çalışmada karmaşığın diyajenetik-metamorfk evriminin yorumlanmasında ve farklıbirimlerin jeolojik tarihçelerinin aydınlatılmasında kloritlerin bir parametre olarak kullanılabilirliğiaraştırılmıştır. Düşük-çok düşük dereceli metamorfk kayaçlarda birincil ve ikincil kökenli olabilenklorit mineralleri; mavi ve kahverengi girişim renklerine ve oldukça düşük çift kırıcılık gösteren optikizotropik görünüme sahiptirler. Kloritler kayaçların matriksinde, gözeneklerinde ve/veya podlardalevhamsı/yapraksı ve yer yer ışınsal biçimlerde görülmektedir. X-ışınları kırınımı (XRD) verilerine göre;bütünüyle IIb politipine sahip olan Mg-Fe kloritler (trioktahedral) brunsvigit-diyabantit-şamozit gibi farklıbileşimler sergilemektedir. Ayrıca, klorit mineralleri türedikleri kayaçlar bakımından felsik ve metabazikkökene karşılık gelmektedir. Benzer biçimde kloritlerin ana element içerikleri ve yapısal formülleri gibijeokimyasal verileri de farklı bileşim ve kökene işaret etmektedir. Klorit minerallerinin iz ve özelliklenadir toprak element (NTE) içerikleri metamorfzma derecesi ile bulundukları kayaca bağlı olarak şisttensleyte doğru artmaktadır. Bu ilişki kondrit-normalize edilmiş iz element ve NTE dağılımlarında belirginolarak fark edilebilmektedir. Bu değişimlerin klorit minerallerinin yapıları, oluşum mekanizmaları veoluştukları tektonik ortamlar ile ilişkili olduğunu göstermektedir. Diğer bir ifadeyle, kloritlerin farklıjeolojik tarihçeye sahip birimlerin ayırt edilmesinde anahtar bir rol oynayabileceğini düşündürmektedir.

Approaches to the low-grade metamorphic history of the karakaya complex by chlorite mineralogy and geochemistry

Chlorite minerals are commonly found in the units of Karakaya Complex that refect different tectonicsettings and evolution. In this study, the availability of chlorites has been investigated as a parameteron the interpretation of the diagenetic-metamorphic evolution and revealing the geological history fromthe different units of the complex. Primary and secondary chlorite minerals in the low-very low-grademetamorphic rocks have interference colors of blue and brown and an optical isotropic appearance withvery low birefringence. Chlorites are seen in the matrix, pores and/or pods of rocks as platy/faky andpartly radial forms. According to X-ray diffraction (XRD) data; Mg-Fe chlorites with entirely IIb polytype(trioctahedral) exhibit various compositions such as brunsvigite-diabantite-chamosite. Furthermore,chlorite minerals correspond to felsic and metabasic origins in terms of the rocks from which they derived.Similarly, geochemical data such as the major element contents and structural formulas of chlorites alsosuggest a different composition and origin. Trace and especially rare earth element (REE) concentrationsof chlorite minerals increase from schist towards slate depending on their degree of metamorphism andnature of the host rocks. This relationship can be signifcantly noticed in the chondrite-normalized REEand trace element patterns. These changes show that are they are related to the structures, formationmechanisms and tectonic environments of the chlorite minerals. In other words, they suggest that chloritesmay play a key role in distinguishing of units with different geological history.

___

  • Ahn, J., Peacor, D.R., 1985. Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays and Clay Minerals, 33, 228-236.
  • Árkai, P., 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplifed by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723-734.
  • Eckhardt, F.J., 1965. Über den Einfuss der Temperature auf den kristallographischen Ordnungsgrad von Kaolinit. Proceedings, International Clay Conference, Stockholm, 1963, 2, 137-145.
  • Erol, O., 1956. Ankara Güneydoğusundaki Elma Dağı ve çevresinin jeolojisi ve jeomorfolojisi üzerine bir araştırma. Maden Tetkik Arama Dergisi, Ankara, Seri D 9, 99 s.
  • Federici, F., Cavazza, W., Okay, A.I., Beyssac, O., Zattin, M., Corrado, S., Dellisanti, F., 2010. Thermal evolution of the Permo- Triassic Karakaya subduction-accretion complex between the Biga peninsula and the Tokat Massif (Anatolia). Turkish Journal of Earth Sciences, 19, 409-429.
  • Foster, M.D., 1962. Interpretation of the composition and a classifcation of the chlorites, U.S. Geological Survey Professional Paper, 414-A, 1-33.
  • Gökçe, A., 1983. Turhal antimon yataklarının maden jeolojisi. Doktora Tezi, Hacettepe Üniversitesi Jeoloji Mühendisliği Bölümü, Fen Bilimleri, Ankara, 150 sayfa.
  • Göncüoğlu, M.C., Dirik, K., Kozlu, H., 1997. General chracteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique de Pays Hellenique, 37, 515-536.
  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Özcan, A., Uysal, Ş., 2000. A geotravers across NW Turkey: tectonic units of the central Sakarya region and their tectonic evolution. In: E. Bozkurt, J. Winchester, and J.A. Piper (eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications, 173, pp. 139-161.
  • Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.
  • Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, A., Eberl, D.D., Formoso, M.L.L., Galan, E., Merriman, R.J., Peacor, D.R., Stanjek, H., Watanabe, T., 2002. Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity Index”. Clay Minerals, 37, 389-393.
  • Haskin, L.A., Haskin, M.A., Frey, F.A., Wildeman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements, L.H. Ahrens (ed.), Pergamon Press, 889-912.
  • Hayes, J.B., 1970. Polytypism of chlorite in sedimentary rocks. Clays and Clay Minerals, 18, 285-306. Hillier, S., Velde B., 1991. Octahedral occupancy and the chemical composition of diagenetic (low temperature) chlorites. Clay Minerals, 26, 149-168.
  • Jahren, J.S., Aagard, P., 1992. Diagenetic illite-chlorite assemblages in arenites. I. Chemical evolution. Clays and Clay Minerals, 40, 540-546.
  • Kisch, H.J., 1980. Illite crystallinity and coal rank associated with lowest-grade metamorphism of the Taveyanne greywacke in the Helvetic zone of the Swiss Alps. Eclogae Geologicae Helvetiae, 73, 753-777.
  • Kisch, H.J., 1990. Calibration of the anchizone: a critical comparison of illite “crystallinity” scales used for defnition. Journal of Metamorphic Geology, 8, 31-46.
  • Krumm, S., 1996. WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of WINFIT 1.0 : a public domain program for interactive profle-analysis under WINDOWS. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Universitatis Carolinae Geologica, 38, 253-261.
  • Kübler, B., 1968. Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bulletin-Centre de Recherches Pau-SNPA, 2, 385-397.
  • Le Corre, C., 1975. Analyse comparée de la cristallinité dans le Briovérian et le Paléozoique centre-armoricans: zonéographie et structure d’un domaine épizonal. Bulletine de la Société Géologique de France, 17, 547-553.
  • Ludwig, V., 1973. Zum Übergang eines Tonschiefers in die Metamorphose: “Grieffelschiefer” des Ordoviziums in NE-Bayren (mit einem Beitrag zum Problem der Illit-Kristallinität). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 144, 50-103.
  • Millot, G., 1970. Geology of Clays. (trans. W.R.Farrand and H.Paquet). Springer Verlag, New York, Berlin, 429 p. MTA., 2002. 1:500 000 Ölçekli Türkiye Jeoloji Haritaları. MTA Genel Müdürlüğü, Ankara.
  • Muravjev, W.I., Salyn, A.L., 1969. Epigenetische Umwandlungen der Schichtsilikate in einem Perm-Triasprofl in Mangyschlak (Kasachtan). Proceedings, International Clay Conference, 1969, Tokyo, 1. Israel University Press, Jerusalem, 325-333.
  • Okay, A.İ. Siyako, M., Bürkan, K.A., 1990. Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol jeologları Derneği Bülteni, 2, 83-121.
  • Okay, A.İ., Göncüoğlu, M.C., 2004. The Karakaya Complex: A Review of Data and Concepts. Turkish Journal of Earth Sciences, 13, 77-95.
  • Özcan, A., Erkan, A., Keskin, A., Keskin, E., Oral, A., Özer, S., Sümergen, M., Tekeli, O., 1980. Kuzey Anadolu fayı ile Kırşehir masif arasının temel jeolojisi. Maden Tetkik ve Arama Enstitüsü, Rapor No: 6722 (yayınlanmamış), Ek (jeolojik harita ve kesitler), Ankara, 136 s.
  • Potel, S., Ferreiro Mählmann, R., Stern, W.B., Mullis, J., Frey, M., 2006. Very low-grade metamorphic evolution of pelitic rocks under high-pressure/low-temperature condition, NW New Caledonia (SW Pacifc). Journal of Petrology, 47, 991-1015.
  • Robertson, A.H.F., Ustaömer, T., 2012. Testing alternative tectono- stratigraphic interpretations of the Late Palaeozoic-Early Mesozoic Karakaya Complex in NW Turkey: Support for an accretionary origin related to northward subduction of Palaeotethys. Turkish Journal of Earth Sciences, 21, 961-1007.
  • Sayit, K., Göncüoğlu, M.C., 2009. Geochemical characteristics of the basic volcanic rocks within the Karakaya Complex: a review. Hacettepe Yerbilimleri 30, 181-191.
  • Sayit, K., Göncüoğlu, M.C., 2013. Geodynamic evolution of the Karakaya Mélange Complex, Turkey: a review of geological and petrological constraints. Journal of Geodynamics, 65, 56-65.
  • Sayit, K., Göncüoğlu, M.C., Furman, T., 2010. Petrological reconstruction of Triassic seamounts/oceanic islands within the Palaeotethys: geochemical implications from the Karakaya subduction/accretion Complex, Northern Turkey. Lithos, 119, 501-511.
  • Schaer, J.P., Persoz, F., 1.976. Aspects strutcruaox et petrographtqoes du Hant Atlas calcaire de Midelt (Maroc). Bulletine de la Société Géologique de France, 18, 1239-1250.
  • Schamel, S., 1973. Eocene subduction in central Liguria, Italy. Unpublished PhD, Thesis, Yale University. Shirozu, H., 1958. X-ray powder patterns and cell dimensions of some chlorites in Japan with a note on their interference colors. Mineralogical Journal, 2, 209-223.
  • Sun, S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Ocean Basins, A.D. Saunders and M.J. Norry (eds.), Geological Society of London, Special Publication, 42, 313-345.
  • Şengör, A.M.C., Yılmaz, Y., Sungurlu, O. 1984. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-Tethys. In: The Geological Evolution of the Eastern Mediterranean, J.E. Dixon and A.H.F. Robertson (eds), Geological Society, London, Special Publications, 17, 77-112.
  • Tekeli, O., 1981. Subduction complex of pre-Jurassic age, Northern Anatolia, Turkey. Geology, 9, 68-72.
  • Tetiker, S., Yalçın, H., Bozkaya, Ö. 2009a. KB Anadolu’daki Karakaya Karmaşığı birimlerinin diyajenezi-düşük dereceli metamorfzması. Hacettepe Üniversitesi, Yerbilimleri, 30, 193-212.
  • Tetiker, S., Yalçın, H., Bozkaya, Ö. 2009b. Karakaya Karmaşığı (Tokat yöresi) birimlerinin düşük dereceli metamorfzması. 14. Ulusal Kil Sempozyumu, Karadeniz Teknik Üniversitesi, Trabzon, 1-3 Ekim, Bildiriler Kitabı, s. 155-173.
  • Tetiker, S., Yalçın, H., Bozkaya, Ö., Göncüoğlu, M. C., 2015.
  • Diagenetic to Low-Grade Metamorphic Evolution of the Karakaya Complex in northern Turkey based on phyllosilicate mineralogy. Mineralogy and Petrology, 109 (201-215).
  • Velde, B., Medhioub, M., 1988. Approach to chemical equilibrium in diagenetic chlorites. Contributions to Mineralogy and Petrology, 98, 122-127.
  • Walker, J.R., 1993. Chlorite polytype geothermometry. Clays and Clay Minerals, 41, 260-267.
  • Warr, L.N., Rice, A.H.N., 1994. Interlaboratory standartization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141-152.
  • Weaver, C.E., Pollard, L.D., 1973. The Chemistry of Clay Minerals. Developments in Sedimentology, 15, 272 p.
  • Weaver, C. E., Highsmith, P. B., Wampler, J. M., 1984. Chlorite: in Shale-slate Metamorphism in the Southern Appalachians, C.E. Weaver and associates (eds.), Elsevier, Amsterdam, 99-139.
  • Xie, X.G., Byerly. G.R., Ferrell, R.E., 1997. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contributions to Mineralogy and Petrology, 126, 275-291.
  • Yalçın, H., Bozkaya, Ö., 2002. Hekimhan (Malatya) çevresindeki Üst Kretase yaşlı volkaniklerin alterasyon mineralojisi ve jeokimyası: deniz suyu-kayaç etkileşimine bir örnek. Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi Seri A-Yerbilimleri, 19, 81-98.
  • Yalçın, H., Bozkaya, Ö., Tetiker, S., 2005. Kangal kömür yatağının kil mineralojisi ve jeokimyası. 12. Ulusal Kil Sempozyumu, Yüzüncüyıl Üniversitesi, Van, 5-9 Eylül, Bildiriler Kitabı, s. 16-31.
  • Zane, A., Sassi, R., Guidotti, C.V., 1998. New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. The Canadian Mineralogist, 36, 713-726.
  • Zane, A., Weiss, Z., 1998. A procedure for classifcation of rock- forming chlorites based on microprobe data. Rendiconti Fisiche Accademia dei Lincei, 9, 51-56.