Anadolu Çaprazı: Kuzey Anadolu Fay Zonu ile Ege / Kıbrıs Yayları Arasında Geniş Bir Sol Yanal Makaslama Zonu

Türk-İran Platosu, Arap ve Avrasya levhalarının çarpışmaları ile ilişkili Bitlis-Zagros Kenet Zonu’nun ard ülkesinde yer alır. Platonun iç deformasyonunun yakın zamanda ayrıntılı biçimde incelenmesi, sağ ve sol yanal doğrultu atımlı yapıların çoklu kesişme noktalarının varlığını ortaya çıkarmış ve bu kaçınılmaz olarak Anadolu Çaprazı adı ile anılan geniş sol yanal makaslama zonu ile açıklanmıştır. Anadolu Çaprazı’nı sınırlayan ve iç deformasyonuna neden olan faylar, yüksek çözünürlüklü uydu görüntüleri, depremlerin odak mekanizması çözümleri ve deniz alanlarındaki yayınlanmış sismik yansıma kesitleri yardımıyla incelenmiştir. Anadolu Çaprazı, Orta Anadolu Fay Zonu ile Doğu Anadolu Fay Zonu arasında 170 km genişliğe ve Erzincan ile Kıbrıs Yayı arasında 850 km uzunluğa sahip, KD-GB yönelimli bir sol yanal makaslama zonudur. Bu zon, Kuzey Anadolu Fay Zonu ve Güneydoğu Anadolu-Zagros Fay Zonu ile en az dört kesişim noktasına sahiptir. Anadolu Çaprazı’na ait Ecemiş-Deliler Fayı’nın Akdeniz’deki uzanımı olan Biruni Fayı, Kıbrıs Yayı’na ve Piri Reis Sırtı’na (Mediterranean Ridge) Kıbrıs’ın batısında ulaşmaktadır. Bu yapı, Antalya – Kekova Fay Zonu ile daralmalı sıçrama oluşturmakta olup, bu nedenle Antalya havzasında KB-GD doğrultulu bindirmeler ile temsil edilen Florence Yükselimi ve Antalya Bindirmesi meydana gelmiştir. Diğer bir daralmalı sıçrama alanı ise Antalya-Kekova Fay Zonu ile Pliny-Strabo Fay Zonu arasında gelişmiş olup, burada Rodos havzasının bindirmeler ile kontrol edilen kuzey kenarı bulunmaktadır. Bu neotektonik çerçeve içinde, varlığı oldukça tartışmalı olan Pliny ve Strabo faylarının karadaki devamı olarak değerlendirilen sol yanal Fethiye – Burdur Fay Zonu’na ihtiyaç bulunmamaktadır. Aslında, Anadolu Levhasının batıya hareketi, sol yanal Anadolu Çaprazı Makaslama Zonu, Antalya-Kekova Fay Zonu ve Pliny-Strabo Fay Zonu ile sağ yanal Kuzey Anadolu Fay Zonu tarafından karşılanmaktadır.

The Anatolian Diagonal: A Broad Left-Lateral Shear Zone Between the North Anatolian Fault Zone and the Aegean / Cyprus Arcs

Recent detailed examination of the internal deformation of the Turkish-Iranian Plateau in the hinterland of Bitlis-Zagros Suture Zone, which is related to the collision of the Arabian and Eurasian plates, indicates multiple intersection points between the right- and left-lateral strike-slip structures explained by an inevitably broad left-lateral strike-slip shear zone, the Anatolian Diagonal. The faults bounding and internally deforming the Anatolian Diagonal were closely examined by using high-resolution satellite images, focal mechanism solutions of the earthquakes, and published seismic reflection data in the offshore areas. The Anatolian Diagonal is a NE-SW trending left-lateral shear zone having a 170 km width between the Central Anatolian and the East Anatolian fault zones and an 850 km length between Erzincan and the Cyprus Arc. It has at least four intersection points with the right-lateral North Anatolian Fault Zone and the Southeast Anatolian-Zagros Fault Zone. As the offshore continuation of the Ecemiş-Deliler Fault of the Anatolian Diagonal, the Biruni Fault reaches the Cyprus Arc and Piri Reis (Mediterranean) Ridge Front west of Cyprus. This structure creates a restraining stepover with the left-lateral Antalya-Kekova Fault Zone and causes NW-SE trending thrusts of the Florence Rise and Antalya Thrust in the Antalya Basin. There is another restraining stepover between the Antalya-Kekova Fault Zone and the Pliny-Strabo Fault Zone, where the thrust-controlled northern margin of Rhodes basin developed. In this neotectonic framework, there is no need for the existence of the highly-debated left-lateral Fethiye-Burdur Fault Zone as an onshore continuation of the Pliny and Strabo faults. In fact, the westerly motion of the Anatolian plate is accommodated by the left-lateral Anatolian Diagonal Shear Zone, Antalya-Kekova Fault Zone and Pliny-Strabo Fault Zone together with the right-lateral North Anatolian Fault Zone.

___

  • Acarel, D., Cambaz, M. D., Turhan, F., Mutlu, A. K. & Polat, R. (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosciences, 11, 1098-1111.
  • Aksu, A. E., Calon, T. J., Hall, J., Mansfield, S. & Yaşar, D. (2005). The Cilicia–Adana basin complex, Eastern Mediterranean: Neogene evolution of an active fore-arc basin in an obliquely convergent margin. Marine Geology, 221, 121-159.
  • Aksu, A. E., Hall, J. & Yaltırak, C. (2009). Miocene–Recent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, 258, 24-47.
  • Aksu, A. E., Walsh-Kennedy, S., Hall, J., Hiscott, R.N., Yaltırak, C., Akhun, S.D. & Çifçi, G. (2014a). The Pliocene–Quaternary tectonic evolution of the Cilicia and Adana basins, eastern Mediterranean: Special reference to the development of the Kozan Fault zone. Tectonophysics, 622, 22-43.
  • Aksu, A. E., Hall, J., Yaltırak, C., Çınar, E., Küçük, M. & Çifçi, G. (2014b). Late Miocene-Recent evolution of the Finike basin and its linkages with the Beydağları complex and the Anaximander Mountains, eastern Mediterranean. Tectonophysics, 635, 59-79.
  • Aksu, A. E., Hall, J. & Yaltırak, C. (2022). The uppermost Messinian-Quaternary evolution of the Anamur-Kormakiti zone: The transition between the Outer Cilicia and Antalya basins. Marine and Petroleum Geology, 136, 105451.
  • Akyüz, H. S., Altunel, E., Karabacak, V. & Yalçıner, C. Ç. (2006a). Historical earthquake activity of the northern part of the Dead Sea Fault Zone, southern Turkey. Tectonophysics, 426, 281-293.
  • Akyüz, H. S, Uçarkuş, G., Şatir, D., Dikbaş, A. & Kozacı, Ö. (2006b). 3 Şubat 2002 Çay depreminde meydana gelen yüzey kırığı üzerinde paleosismolojik araştırmalar. Yerbilimleri, 27, 41-52.
  • Alan, İ., Balcı, V. & Elibol, H. (2014.) Geological map of the Silifke-P31 and P32 Quadrangles. MTA-Ankara, Türkiye.
  • Arpat, E. & Şaroğlu, F. (1972). The East Anatolian fault system; thoughts on its development. Bulletin of the Mineral Research and Exploration, 78, 33-39.
  • Arpat, E. & Şaroğlu, F. (1975). Türkiye’deki bazı önemli genç tektonik olaylar. Türkiye Jeoloji Kurumu Bülteni, 18, 91-101. http://tjb.jmo.org.tr/detail-article.php?articlekod=63
  • Barka, A. A. & Reilinger, R. (1997). Active tectonics of the Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Annales Geofisica, 40, 587-610.
  • Barrier, E., Chamot Rooke, N. & Giordano, G. (2004). Geodynamic Maps of the Mediterranean-sheet 1: Tectonics and Kinematics. Commission for the Geological map of the World (CGMW) and UNESCO.
  • Biju-Duval, B., Dercourt, J. & Le Pichon, X. (1976). From the Tethys Ocean to the Mediterranean Seas: A plate tectonic model of the evolution of the western Alpine system. In B. Biju-Duval, L. Montadert, (Eds.), International Symposium on the Structural History of the Mediterranean Basins, Split (Yugoslavia), (p. 143-164). Editions Technip Paris
  • Chorowicz, J., Dhont, D. & Gündoğdu, N. (1999). Neotectonics in the eastern North Anatolian Fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. Journal of Structural Geology, 21, 511-532.
  • Çıvgın, B., Kaypak, B., Seyitoğlu, G., Aktuğ, B., Kılıçarslan, Ö. & Akkoyunlu, F. (2019). An approach to the tectonic structure of the Acıpayam Basin: Analysis of the 20.03.2019 (Mw 5.5) earthquake and its aftershocks. 20th Anniversary of the 1999 Marmara Earthquakes: 23rd Active Tectonics Research Group Meeting, Abstract Books, İstanbul, Türkiye.
  • Davis, P. (1971). Distribution patterns in Anatolia with particular reference to endemism. In P. H. Davis & I. C. Hedge (Eds.), Plant life of southwest Asia (pp. 15-28). University Press, Aberdeen.
  • Dirik, K. & Göncüoğlu, M. C. (1996). Neotectonic characteristics of central Anatolia. International Geology Reviews, 38, 807-817.
  • Dirik, K., Yürür, T. & Demirbağ, H. (2003). 1 Mayıs 2003 Çimenli (Bingöl) Depremi Değerlendirme Raporu. https://www.doi.org/10.13140/2.1.5130.1449
  • Duman, T. Y. & Emre, Ö. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society London Special Publications, 372, 495-529.
  • Dündar, S. & Varol, B. (2019). New insights on Messinian evaporites based on field and seismic interpretations in the Neogene Antalya Basin, SW Turkey. Turkish Journal of Earth Sciences, 28, 687-705.
  • Dziewonski, A. M., Chou, T-A. & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825-2852.
  • Ekström, G., Nettles., M. & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth Planetary Interiors, 200-201, 1-9.
  • Elitez, İ. & Yaltırak, C. (2016). Miocene to Quaternary tectonostratigraphic evolution of the middle section of the Burdur – Fethiye Shear Zone, south-western Turkey: Implications for the wide inter-plate shear zones. Tectonophysics, 690, 336-354.
  • Elitez, İ., Yaltırak, C. & Aktuğ, B. (2016). Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean). The Burdur – Fethiye Shear Zone. Tectonophysics, 688, 26-35.
  • Emre, Ö. & Duman, T. (2011a). 1:250,000 Scale active fault map series of Turkey, Mersin (NJ 36-16) Quadrangle Serial Number: 34. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö. & Duman, T. (2011b). 1:250,000 Scale active fault map series of Turkey, Fethiye (NJ 35-16) Quadrangle Serial Number: 13. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H. & Olgun, Ş. (2011a). 1:250,000 Scale active fault map series of Turkey, Adana (NJ 36-12) Quadrangle Serial Number: 33. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H. & Olgun, Ş. (2011b). 1:250,000 Scale active fault map series of Turkey, Kayseri (NJ 36-8) Quadrangle Serial Number: 32. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T., Olgun, Ş., Elmacı, H. & Özalp, S. (2012a). 1:250,000 Scale active fault map series of Turkey, Divriği (NJ 37-2) Quadrangle Serial Number: 41. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T. Y., Elmacı, H., Özalp, S. & Olgun, Ş. (2012b). 1:250,000 Scale active fault map series of Turkey, Malatya (NJ37-6) Quadrangle Serial Number: 42. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T. & Elmacı, H. (2012c). 1:250,000 Scale active fault map series of Turkey, Elbistan (NJ 37-5) Quadrangle. Serial Number: 37. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T., Olgun, Ş., Elmacı, H. & Özalp, S. (2012d). 1:250,000 Scale active fault map series of Turkey, Gaziantep (NJ 37-9) Quadrangle Serial Number: 38. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active fault map of Turkey with and explanatory text. Special Publication Series 30. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275.
  • Ergin, M. (1999). Present day seismicity and seismotectonic characteristics of the Cilician region [Unpublished PhD thesis]. Istanbul Technical University.
  • Ergin, M., Aktar, M. & Eyidoğan, H. (2004). Present-Day Seismicity and Seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey. Bulletin of the Seismological Society of America, 94, 930-939.
  • Esri (2021). "Ocean" [basemap]. Scale Not Given. "World Ocean Base". January, 2021. https://server.arcgisonline.com/arcgis/rest/services/Ocean/World_Ocean_Base/MapServer (January, 2022).
  • Güneş, P., Aksu, A. E. & Hall, J. (2018). Structural framework and deformation history of the western Cyprus Arc. Tectonophysics, 744, 438-457.
  • Güvercin, S. E., Konca, A. Ö., Özbakır, A. D., Ergintav, S. & Karabulut, H. (2021). New focal mechanisms reveal fragmentation and active subduction of the Antalya slab in the Eastern Mediterranean. Tectonophysics 805, Article 228792. doi.org/10.1016/j.tecto.2021.228792.
  • Hall, J., Aksu, A. E., Yaltırak, C. & Winsor, J. D. (2009). Structural architecture of the Rhodes Basin: A deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, 258,1-23.
  • Hall, J., Aksu, A. E., King, H., Gogacz, A., Yaltırak, C. & Çifçi, G. (2014a). Miocene–Recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Marine Geology, 349, 1-23.
  • Hall, J., Aksu, A. E., Elitez, I., Yaltırak, C. & Çifçi, G. (2014b). The Fethiye-Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, 635, 80-99.
  • Harrison, R.W., Tsiolakis, E., Stone, B.D., Lord, A., McGheehin, J. P., Mahan, S. A. & Chirico, P. (2012). Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate. In A.H.F. Robertson, O. Parlak & U.C. Ünlügenç, (Eds.), Geological Development of Anatolia and the Easternmost Mediterranean Region. Geological Society London, Special Publications, 372. https://doi.org/10.1144/SP372.3
  • Herece, E. (2008). Doğu Anadolu Fayı (DAF) Atlası. Maden Tetkik Arama Genel Müdürlüğü Özel Yayın Serisi. No: 13, Ankara.
  • Herrmann, R. B. (2013). Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letters, 84, 1081-1088.
  • Higgins, M., Schoenbohm, L. M., Brocard, G., Kaymakçı, N., Gosse, J.C. & Cosca, M. A. (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics, 34, 2118-2141.
  • Howell, A., Jackson, J., Copley, A., McKenzie, D. & Nissen, E. (2017). Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International, 211, 593-620.
  • Huang, W. (1993). Morphologic patterns of stream channels on the active Yishi Fault, southern Shandong province, eastern China: implications for repeated great earthquakes in the Holocene. Tectonophysics, 219, 283-304.
  • Huguen, C., Mascle, J., Chaumillon, E., Woodside, J. M., Benkhelil, J., Kopf, A. & Volkonskaı̈a, A. (2001). Deformational styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics, 343, 21-47.
  • Jackson, J., Howell, A., Copley, A., McKenzie, D. & Nissen, E. (2019). Active tectonics of SW Turkey from the combined use of seismology, geodesy and Quaternary Geology. 72nd In H. Sözbilir, Ç. Özkaymak, B. Uzel, Ö. Sümer, M. Softa, Ç. Tepe, & S. Eski (Eds), Geological Congress of Turkey, The Proceedings and Abstracts Book, (p. 6). https://www.jmo.org.tr/resimler/ekler/174e0f6fa731893_ek.pdf
  • Kaya, S., Esat, K., Işık, V., Kaypak, B., Uyar, A. G. & Seyitoğlu, G. (2014). Geological and geophysical observations on the tectonic features of western part of the Afyon-Akşehir graben: a contribution to the arguments on the two-stage extension model. Yerbilimleri, 35, 1-16.
  • Kaymakçı, N., İnceöz, M., Ertepınar, P. & Koç, A. (2010). Late Cretaceous to Recent kinematics of SE Anatolia (Turkey). Geological Society London Special Publications, 340, 409–435.
  • Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A.A., Gülyüz, E., Uzel, B. & Sözbilir, H. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101-115.
  • Keller, E. A. & Pinter, N. (2001). Active tectonics: Earthquakes, uplift and landscape. Prentice Hall.
  • Kılıç, T. & Utkucu, M. (2012). A Seismic Moment Tensor Catalogue Comprising Years 2007 and 2008 for M ≥ 4.0 Earthquakes in Turkey. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 33(3), 219-238.
  • Kılıç, T., Kartal, R.F., Kadirioğlu, F.T., Duman, T.Y. & Özalp, S. (2017). Türkiye ve yakın çevresi için düzenlenmiş moment tensor (1906–2012) kataloğu MW ≥ 4,0). In T.Y. Duman (Ed.), Türkiye Sismotektonik Haritası: Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi-34, 261 s.
  • Koç, A. & Kaymakçı, N. (2013). Kinematics of Sürgü Fault Zone (Malatya, Turkey): A remote sensing study. Journal of Geodynamics, 65, 292-307.
  • Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental transcurrent structure: The Central Anatolian Fault Zone, Turkey. Tectonophysics, 284, 317-336.
  • Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019). The geomorphological regions of Turkey. In C. Kuzucuoğlu, A. Çiner, N. Kazancı (Eds.), Landscapes and Landforms of Turkey (pp. 41-178). Springer International Publishing.
  • Le Pichon, X. & Kreemer, C. (2010). The Miocene -to-Present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351.
  • Lentas, K. (2018). Towards routine determination of focal mechanisms obtained from first motion P-wave arrivals. Geophysical Journal International, 212, 1665–1686.
  • Lentas, K, Di Giacomo, D., Harris, J. & Storchak, D. A. (2019). The ISC Bulletin as a comprehensive source of earthquake source mechanisms. Earth System Science Data, 11, 565-578.
  • Mansfield, S. L. (2005). Neogene Tectonic and Sedimentary Evolution of the Outer Cilicia Basin, Eastern Mediterranean Sea [MSc Thesis,]. Memorial University of Newfoundland and Labrador. ISBN: 978-0-494-19380-8.
  • McClusky, S., Balassian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., et al. (2000). Global Positioning System constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695-5719.
  • McKenzie, D. P. (1970). Plate tectonics of the Mediterranean Region. Nature, 226, 239-243.
  • McKenzie, D. (1972). Active tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 30, 109-185.
  • Melgar, D., Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B.W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S. & Öcalan, T. (2020). Rupture kinematics of 2020 January 24 Mw=6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophysical Journal International, 223, 862-874.
  • Morelli, A. & Barrier, E. (2004). Geodynamic map of the Mediterranean. Commission for the Geological Map of the World, Limoges, France.
  • Nalbant, S. S., McCloskey, J., Steacy, S. & Barka, A. A. (2002). Stress accumulation and increased seismic risk in eastern Turkey. Earth and Planetary Science Letters, 195, 291-298.
  • Nalbant, S. S., McCloskey, J. & Steacy, S. (2005). Lessons on the calculation of static stress loading from the 2003 Bingöl, Turkey earthquake. Earth and Planetary Science Letters, 235, 632-640.
  • Okyar, M., Ergin, M. & Evans, G. (2005). Seismic stratigraphy of Late Quaternary sediments of western Mersin Bay shelf, (NE Mediterranean Sea). Marine Geology, 220, 113-130.
  • Ökeler, A. (2003). Recent Seismicity and Stress Analysis of The Cilician Region [Unpublished M.Sc. thesis]. Istanbul Technical University (in Turkish).
  • Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R. & Govers, R. (2013). The Pliny–Strabo trench region: A large shear zone resulting from slab tearing. Earth and Planetary Science Letters, 375, 188-195.
  • Özkaptan, M., Kaymakçı, N., Langereis, C. G., Gülyüz, E. & Özacar, A. A. (2018). Age and kinematics of the Burdur basin: Inferences for existence of the Fethiye Burdur Fault Zone in SW Anatolia (Turkey). Tectonophysics, 744, 256-274.
  • Papazachos, B. C. & Papaioannou, C. A. (1999). Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics, 308, 193-204.
  • Poisson, A., Wernli, R., Sağular, E. K. & Temiz, H. (2003). New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geological Journal, 38, 311-327.
  • Pondrelli, S. (2002). European-Mediterranean Regional Centroid-Moment Tensors Catalog (RCMT) [Data set]. Instituto Nazionale di Geofisica e Vulcanologia (INGV).
  • Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksöz, M. N., Barka, A. A., et al. (1997). Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journal of Geophysical Research, 102, 9983-9999.
  • Reilinger, R. E., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., et al. (2006). GPS constraints on continental deformation in the Africa - Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, Article B05411. https://doi.org/10.1029/2005JB004051
  • Reitman, N. G., Mueller, K. J., Tucker, G. E., Gold, R. D., Briggs, R. W. & Barnhart, K. R. (2019). Offset channels may not accurately record strike-slip fault displacement: Evidence from landscape evolution models. Journal of Geophysical Research: Solid Earth, 124, 13, 427-13,451.
  • Rojay, B., Heimann, A. & Toprak, V. (2001). Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia, Turkey): The transition zone between the Dead Sea transform and the East Anatolian fault zone. Geodinamica Acta, 14, 197-212.
  • Sage, L. & Letouzey, J. (1990). Convergence of the African and Eurasian plate in the eastern Mediterranean. In J. Letouzey (Ed.), Petroleum and Tectonics in Mobile Belts (pp. 49-68). 4th IFB Exploration and Production Research Conference, Bordeaux, November 14–18.
  • Sarıkaya, M. A., Yıldırım, C. & Çiner, A. (2015). Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides. Geomorphology, 228, 512-525.
  • Sançar, T., Zabcı, C., Akçar, N., Karabacak, V., Yeşilyurt, S., Yazıcı, M., Akyüz, H. S., Öztüfekçi Önal, A., Ivy-Ochs, S., Christl, M. & Vockenhuber, C. (2020). Geodynamic importance of the strike-slip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift and slip rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). Journal of Asian Earth Sciences, 188, Article 104091. https://doi.org/10.1016/j.jseaes.2019.104091
  • Savaşçın, M. Y., Francalanci, L., Innocenti, F., Manetti, P., Birsoy, R. & Daǧ, N. (1995). Miocene-Pliocene potassic-ultrapotassic volcanism of the Afyon-Isparta region (central-western Anatolia, Turkey). Petrogenesis and geodynamic implications: International Earth Sciences Colloquium on the Aegean Region (IESCA-1995), Proceedings V-II, (pp. 487-502).
  • Sellier, N. C., Loncke, L., Vendeville, B. C., Mascle, J., Zitter, T., Woodside, J. & Loubrieu, B. (2013a). Post-Messinian evolution of the Florence Ridge area (Western Cyprus Arc), Part I: Morphostructural analysis. Tectonophysics, 591, 131-142.
  • Sellier, N.C., Vendeville, B. C. & Loncke, L. (2013b). Post-Messinian evolution of the Florence Rise area (Western Cyprus Arc) Part II: Experimental modeling. Tectonophysics, 591, 143-151.
  • Seyitoğlu, G., Aktuğ, B., Karadenizli, L., Kaypak, B., Şen, Ş., Kazancı, N., Işık, V., Esat, K., Parlak, O., Varol, B., Saraç, G. & İleri, İ. (2009). A Late Pliocene - Quaternary pinched crustal wedge in NW central Anatolia, Turkey: A neotectonic structure accommodating the internal deformation of the Anatolian Plate. Geological Bulletin of Turkey, 52(1), 121-154. https://dergipark.org.tr/tr/pub/tjb/issue/28367/301626
  • Seyitoğlu, G., Ecevitoğlu, B., Kaypak, B., Esat, K., Çağlayan, A., Gündoğdu, O., Güney, Y., Işık, V., Pekkan, E., Tün, M. & Avdan, U. (2015). A missing-link in the tectonic configuration of the Almacık Block along the North Anatolian Fault Zone (NW Turkey): Active faulting in the Bolu plain based on seismic reflection studies. Geophysical Journal International, 201, 1814-1833.
  • Seyitoğlu, G., Esat, K. & Kaypak, B. (2017). The neotectonics of southeast Turkey, northern Syria and Iraq: the internal structure of the South East Anatolian Wedge and its relationship with the recent earthquakes. Turkish Journal of Earth Sciences, 26, 105-126.
  • Seyitoğlu, G., Esat, K., Kaypak, B., Toori, M. & Aktuğ, B. (2018). Internal deformation of the Turkish-Iranian Plateau in the hinterland of Bitlis-Zagros Suture Zone. In A. Farzipour Saein (ed.), Tectonic and Structural Framework of the Zagros Fold-Thrust Belt (pp. 161-244). Elsevier.
  • Seyitoğlu, G., Kaypak, B., Esat, K. & Toori, M. (2020). The focal mechanism solution of 2020.10.25 (Mw=4.1) Sancaklı-Bingöl Earthquake and an evaluation of the seismicity along the Southeast Anatolian Zagros Fault Zone. Researchgate Technical Report. http://doi.org/10.13140/RG.2.2.23793.10083
  • Seyitoğlu, G., Esat, K., Kaypak, B. & Çıvgın, B. (2022) Seismotectonics of the southern branch of North Anatolian Fault Zone along Bolu – Bursa – İzmir – Değirmenlik (Milos) island in the Aegean Sea. In review.
  • Seymen, İ. & Aydın, A. (1972). The Bingöl earthquake fault and its relation to the North Anatolian fault zone. Bulletin of the Mineral Research and Exploration, 79, 8-12.
  • Shaw, B. & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181, 966-984.
  • Symeou, V., Homberg, C., Nader, F.H., Darnault, R., Lecomte, J-C. & Papadimitriou, N. (2018). Longitudinal and temporal evolution of the tectonic style along Cyprus Arc System, assessed through 2-D reflection seismic interpretation. Tectonics, 37, 30-47.
  • Şaroğlu, F., Emre, Ö. & Kuşçu, İ. (1992). The East Anatolian Fault Zone of Turkey. In R.C. Bucknam, & P.L. Hancock (Eds.), Major active faults of the world, results of IGCP project 206. Annales Tectonicae, suppl vol IV, 99-125.
  • Şengör, A. M. C. (1980). Türkiye’nin Neotektoniğinin Esasları [Fundamentals of the neotectonics of Turkey]. Publication of Geological Society of Turkey, pp 1-40.
  • Şengör, A. M. C. (2017). Diversion of river courses across major strike-slip faults and keirogens. In İ. Çemen & Y. Yılmaz (Eds.), Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region (pp. 93-101). Geophysical Monograph 225.
  • Şengör, A. M. C. & Barka, A. (1992). Evolution of escape-related strike-slip systems: implications for disruption of collisional orogens. In 29th International Geological Congress (p.:323). Kyoto, Japan, Abstracts, vol. 1, p. 232.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip deformation basin formation and sedimentation: Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N. Christie-Blick (Eds.), Strike-slip faulting and basin formation (pp.227-264). Society of Economic Paleontologist and Minerologists Special Publications 37.
  • Şengör, A. M. C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. & Rangin, C. (2004). The North Anatolian Fault: A new look. Annual Review of Earth Planetary Sciences, 33, 1-75.
  • Şengör, A. M. C., Zabcı, C. & Natal'in, B. A. (2019). Chapter 9 - Continental Transform Faults: Congruence and Incongruence with Normal Plate Kinematics? In J. C. Duarte (Ed.), Transform Plate Boundaries and Fracture Zones (pp. 169-247). Elsevier. https://doi.org/10.1016/B978-0-12-812064-4.00009-8
  • Umhoefer, P. J., Thomson, S. N., Lefebvre, C., Cosca, M. A., Teyssier, C. & Whitney, D. L. (2020). Cenozoic tectonic evolution of the Ecemiş Fault Zone and adjacent basins, central Anatolia, Turkey, during the transition from Arabia-Eurasia collision to escape tectonics. Geosphere, 16, 1358-1384.
  • Walsh-Kennedy, S., Aksu, A. E., Hall, J., Hiscott, R. N., Yaltırak, C. & Çifçi, G. (2014). Source to sink: The development of the latest Messinian to Pliocene–Quaternary Cilicia and Adana Basins and their linkages with the onland Mut Basin, eastern Mediterranean. Tectonophysics, 622, 1-21.
  • Westaway, R. & Arger, J. (2001). Kinematics of the Malatya-Ovacık Fault. Geodinamica Acta, 14, 103-131.
  • Woodside, J. M. (1977). Tectonic elements and crust of Eastern Mediterranean Sea. Marine Geophysical Research, 3, 317-354.
  • Woodside, J. M., Mascle, J., Huguen, C. & Volkonskaia, A. (2000). The Rhodes Basin, a post-Miocene tectonic trough. Marine Geology, 165, 1-12.
  • Woodside, J. M., Mascle, J., Zitter, T. A. C., Limonov, A. F., Ergün, M. & Volkonskaia, A. (2002). The Florence Rise, the western bend of the Cyprus Arc. Marine Geology, 185, 177-194.
  • Yazıcı, M., Zabcı, C., Sançar, T. & Natalin, B. A. (2018). The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 312, 129-145.
  • Yetiş, C. (1978). Geology of the Çamardı (Niğde) region and the characteristics of the Ecemiş Fault Zone between Madenboğaz and Kamışlı. Istanbul University, Faculty of Science Bulletin, Serie B, 43, 41-61.
  • Yıldırım, C., Sarıkaya, M. A. & Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics, 35, 1446-1464.
  • Yolsal-Çevikbilen, S. & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536-537, 61-100.
  • Zhang, K., Liu, K. & Yang, J. (2004). Asymmetrical valleys created by the geomorphic response of rivers to strike-slip fault. Quaternary Research, 62, 301-315.
  • Zitter, T. A. C., Woodside, J. M. & Mascle, J. (2003). The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal, 38, 375-394.
  • Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The World Stress Map project. Journal of Geophysical Research, 97, 11703-11728.