Aksu Havzası'nın (Antalya, Türkiye) Neojen Stratigrafisi ve Yapısal Unsurları

Naplı ve bindirmeli Toros kuşağı, Afrika ve Avrasya levhalarının Kretase’den günümüze kadar devam eden yaklaşık K-G yönlü birbirlerine doğru yaklaşma hareketine bağlı olarak oluşmuştur. Bu hareket Neojen’in erken dönemlerinde Isparta Büklümü olarak tanımlanan karmaşık bir morfo-tektonik yapının gelişmesine neden olmuştur. Miyosen’de, Batı ve Orta Toroslar ile Isparta Büklümü’nün iç kesimleri, kırıntılı sedimanlar ve karbonatlarla karakterize edilen denizel havza dolguları ile doldurulmuştur. Çalışma alanı olarak incelenen Aksu Havzası da bu denizel havzalardan biri olup ve Isparta Büklümü’nün tam merkezinde bulunmaktadır. Dolayısıyla, Aksu Havzası Neojen döneminde meydana gelen kabuksal deformasyona ait jeolojik kayıtları tutmuştur. Aksu Havzası dolgusu, genel olarak Orta Miyosen’den Kuvaterner’e kadar denizel kırıntılı karakterde olup; 1 km’den fazla kalınlığa sahiptir. Havzanın Pliyosen öncesi sedimanları yoğun bir deformasyona maruz kalmıştır. Aksu Havzası’nın sedimanter dolgusu temel üzerine uyumsuzluk ile yerleşen Burdigaliyen-Langhiyen Oymapınar Kireçtaşı ile başlar. İstiflenme düzeni, havzanın kuzeyinde ve güneyinde stratigrafik ve litolojik açıdan farklılıklar göstermektedir. Havzanın kuzey kesimindeki Miyosen istifinin en genç birimi Tortoniyen yaşlı olup, Tortoniyen ve Pleyistosen arası birimler birimler eksiktir. Buna karşın, havzanın güneyinde kalan istif nispeten daha tamdır. Litostratigrafik özelliklerin yanı sıra, bu çalışmada Aksu Havzası’nı şekillendiren yapısal unsurlar da ele alınmıştır. Bunlar Aksu ve Kapıkaya bindirmeleri olarak belirlenmiştir. Arazi çalışmalarında yapılan gözlemler ve anahtar fay hatları üzerinden alınan fay-kayma verilerinden elde edilen sonuçlar Aksu Havzasının dört farklı tektonik evrede geliştiğini göstermektedir. Bunlardan ilki, havzanın oluşumu ile ilgili olan ~D-B açılma evresi iken, ikinci evre Isparta Büklümü’nün batı kanadının KD’ya hareketi ile ilişkili olan ~K-G sıkışmalı Likya evresidir. Üçüncü evre, havzada en baskın görülen ~D-B sıkışmalı Aksu evresidir. K-G açılma evresi ise, dördüncü ve son tektonik faz olarak belirlenmiştir. Tüm bu veriler ışığında, Serravaliyen’den Erken Pliyosen’e kadar etkinliğini sürdüren Isparta Büklümü’nün merkezindeki D-B doğrultulu bir kısalmanın varlığı, Afrika ve Avrasya’nın K-G yakınsamasına bağlı levha tektoniği çerçevesinde değerlendirildiğinde ilginçtir. Isparta Büklümü’nün hemen altındaki mantoya ait sismik tomografi görüntüleri Isparta Büklümü’nün altında dalan iki ayrı levha parçasının (Kıbrıs ve Antalya levhaları) varlığına işaret etmişlerdir. Bu durumda, Isparta Büklümü’nün Mio-Pliyosen ve hatta modern dönemdeki evriminde ve Torosların yükselişinde, Antalya Levhası’nın önemli bir katkısı beklenmelidir.

Neogene Stratigraphy and Structural Elements of the Aksu Basin (Antalya, Turkey)

The Tauride fold and thrust belt formed during ~N-S convergence between African and Eurasian plates since Cretaceous time. This movement led to the development of a complex morpho-tectonic structure, so-called ‘Isparta Angle’ during the early stage of the Neogene time. In Miocene time, the western and central Taurides and the inner part of the Isparta Angle became overlain by marine sedimentary basins which are characterized by clastics and carbonates. Aksu Basin which is determined as study area is one of these marine basins and is located in the center of the Isparta Angle. Therefore, Aksu Basin contains the geological records of the crustal deformation occurred during the Neogene period. The sedimentary infill of the Aksu Basin is mainly characterized by marine clastics with more than 1 km thick from the Middle Miocene to Pliocene. The pre-Pliocene basin infill was subjected to intense deformation. Sedimentary sequence of the Aksu Basin starts with Burdigalian-Langhian Oymapınar Limestone which unconformably overlies the basement unit. The lithostratigraphy in the north is different from that of the south of the basin. The youngest Miocene unit in the north of the basin is the Tortonian aged and the units deposited between Tortonian and Pleistocene is missing in the sequence. On the other hand, the sequence is more complete in the south of the basin. In addition to lithostratigraphic features, the structural elements which are forming the Aksu Basin are also carried out during this study. These are the Aksu and Kapıkaya thrusts. Field observations and results obtained from the kinematic measurements along the key structural zones show that Aksu Basin developed through four different tectonic phases. While the first phase is ~E-W extensional phase which is related to opening of the basin, the second phase is ~N-S compressional Lycian phase. The third phase is ~E-W compressional (Aksu) phase, which is the most prominent phase in the basin. N-S extensional phase is determined as the fourth and the last tectonic phase. Under the light of whole data, presence of the E-W shortening which is active between Serravalian and Early Pliocene in the center of the Isparta Angle is interesting given the plate tectonic setting driven by N-S convergence of the Africa and Eurasia. The seismic tomography images of the mantle below the Isparta Angle indicates that there are two separate slab segments (Cyprus and Antalya slabs). Therefore, an important impact of the Antalya slab should be expected in the Mio-Pliocene and even modern evolution of the Isparta Angle and the uplift of the Taurides.

___

  • Akay, E., Uysal, S., Poisson, A., Cravatte, J. & Muller, C. (1985). Stratigraphy of the Antalya Neogene Basin. Bulletin of the Geological Society of Turkey, 28(2), 105-119.
  • Akay, E., ve Uysal, S. (1985). Orta Torosların batısındaki (Antalya) Neojen çökellerinin stratigrafisi, sedimantolojisi ve yapısal jeolojisi (Rapor No:7799). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Alçiçek, M.C., & ten Veen, J.H. (2008). The late Early Miocene Acıpayam piggy-back basin: Refining the last stages of Lycian nappe emplacement in SW Turkey. Sedimentary Geology 208(3-4), 101–113. https://doi.org/10.1016/j.sedgeo.2008.05.003
  • Alçiçek, M.C., Mayda, S., ten Veen, J.H., Boulton, S.J., Neubauer, T.A., Alçiçek, H., Tesakov, A.S., Saraç, G., Hakyemez, H.Y., Göktaş, F., Murray, A.M., Titov, V. V., Jiménez-Moreno, G., Büyükmeriç, Y., Wesselingh, F.P., Bouchal, J.M., Demirel, F.A., Kaya, T.T., Halaçlar, K., Bilgin, M., van den Hoek Ostende, L.W. (2019). Reconciling the stratigraphy and depositional history of the Lycian orogentop basins, SW Anatolia. Palaeobiodiversity and Palaeoenvironments 99, 551-570. https://doi.org/10.1007/s12549-019-00394-3
  • Andrew, T., & Robertson, A.H.F. (2002). The Beyşehir–Hoyran–Hadim Nappes: genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society, 159(5), 529-543.
  • Angelier, J. (1989). From orientation to magnitudes in paleostress determinations using fault slip data. Journal of Structural Geology, 11(1-2), 37-50.
  • Barrier, E., & Vrielynck, B. (2008). Atlas MEBE - Paleotectonic maps of the Middle East. Atlas of 14 maps.
  • Biryol, C. B., C., Beck, S. L., Zandt, G., & Özacar, A.A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057.
  • Blumenthal, M. (1951). Recherches geologiques dans le Taurus occidental dans l’arriere- pays d’Alanya. Maden Tetkik Arama Enstitüsü Publications, no. D5, 134, 1955.
  • Blumenthal, M. (1963). Le systeme structural du Taurus sud-anatolien. In Livre a’memoire du Professeur P. Fallot. Mem. Soc. Geol. Fr. hors, 2, 611-662.
  • Colby, B. R. (1963). Fluvial Sediments: A Summary of Source, Transportation, Deposition, and Measurement of Sediment Discharge (No. 1181). US Government Printing Office.
  • Collins, A.S. & Robertson, A.H.F. (1997). Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology, 25(3), 255-258.
  • Collins, A.S. & Robertson, A.H.F. (1998). Processes of Late Cretaceous to Late Miocene episodic thrustsheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society, 155(5), 759-772.
  • Collins, A.S. & Robertson, A.H.F. (2003). Kinematic evidence for Late Mesozoic–Miocene emplacement of the Lycian Allochthon over the western Anatolide belt, SW Turkey. Geological Journal, 38(3-4), 295-310.
  • Cosentino, D., Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N. & Strecker, M.R. (2012). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. GSA Bulletin, 124(1-2), 133-145.
  • Çiner, A., Karabıyıkoğlu, M. & Monod, O. (2008). Late Cenozoic sedimentary evolution of the Antalya Basin, southern Turkey. Turkish Journal of Earth Sciences, 17(1), 1-41.
  • De Boorder, H., Spakman, W., White, S.H. & Wortel, M.J.R. (1998). Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth and Planetary Science Letters, 164(3-4), 569-575.
  • Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V. & San’kov, V. (1997). Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1-4), 1-38.
  • Deynoux, M., Çiner, A., Monod, O., Karabıyıkoglu, M., Manatschal, G. & Tuzcu, S. (2005). Facies architecture and depositional evolution of alluvial fan to fan-delta complexes in the tectonically active Miocene Köprüç ay Basin, Isparta Angle, Turkey. Sedimentary Geology, 173(1-4), 315-343.
  • Dewey, J. F. & Şengör, A.C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84-92.
  • Dumont, J.-F., Gutnic, M., Marcoux, J., Monod, O. & Poisson, A. (1972). Le Trias des Taurides occidentales (Turquie). Definition du bassin pamphylien: un nouveau domain a ophiolites a la marge externe de la chaine taurique. Zeitschrift der Deutschen Geologischen Gesellschaft, 123, 385-409.
  • Dumont, J.F. & Kerey, K. (1975). Basement geological study in the south of Egirdir lake. Bulletin of the Geological Society of Turkey, 18(2), 169-174.
  • Eroskay, S. O. (1968). Köprüç ay-Beşkonak Rezervuarı Jeolojik İncelemesi (Rapor no: II-06-5). Elektrik İşleri Etüt İdaresi, Ankara.
  • Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. & Regard, V. (2006). Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242(1-2), 85-97.
  • Faccenna, C., Becker, T.W., Auer, L., Billi, A., Boschi, L., Brun, J.P., Capitanio, F.B., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F. & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean. Reviews of Geophysics, 52(3), 283-332.
  • Flecker, R. (1995). Miocene basin evolution of the Isparta Angle, Southern Turkey [Unpublished doctoral dissertation]. University of Edinburgh.
  • Flecker, R., Ellam, R.M., Müller, C., Poisson, A., Robertson, A.H.F., & Turner, J. (1998). Application of Sr isotope stratigraphy and sedimentary analysis to the origin and evolution of the Neogene basins in the Isparta Angle, southern Turkey. Tectonophysics, 298(1-3), 83-101.
  • Flecker, R., Poisson, A. & Robertson, A.H.F. (2005). Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional eastern Mediterranean context. Sedimentary Geology, 173(1-4), 277-314.
  • Gans, C.R., Beck, S.L., Zandt, G., Biryol, C.B. & Ozacar, A.A. (2009). Detecting the limit of slab break-off in central Turkey: new high-resolution Pn tomography results. Geophysical Journal International, 179(3), 1566-1572.
  • Glover, C. & Robertson, A.H.F. (1998a). Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298(1-3), 103-132.
  • Glover, C.P. & Robertson, A.H.F. (1998b). Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey. Journal of the Geological Society, 155(2), 365-387.
  • Govers, R. & Wortel, M.J.R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1-2), 505- 523.
  • Göncüoğlu, M.C. & Dirik, K. (1996). Neotectonic characteristics of central Anatolia. International Geology Review, 38(9), 807-817.
  • Göncüoğlu, M.C., Dirik, K. & Kozlu, H. (1997). General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. In Annales Geologique de Pays Hellenique, 37, 515-536.
  • Gutnic, M. (1979). Géologie des Taurides Occidentales (Turquie) (No. 137). Société géologique de France.
  • Hall, J., Aksu, A.E., King, H., Gogacz, A., Yaltırak, C. & Çifçi, G. (2014). Miocene– Recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Marine Geology, 349, 1-23.
  • Hayward, A.B. (1984). Miocene clastic sedimentation related to the emplacement of the Lycian Nappes and the Antalya Complex, SW Turkey. Geological Society, London, Special Publications, 17(1), 287-300.
  • Hüsing, S.K., Zachariasse, W.J., van Hinsbergen, D.J., Krijgsman, W., Inceöz, M., Harzhauser, M. & Kroh, A. (2009). Oligocene–Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geological Society, London, Special Publications, 311(1), 107-132.
  • Jackson, J. & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.
  • Kalyoncuoğlu, Ü.Y., Elitok, Ö., Dolmaz, M.N., & Anadolu, N. C. (2011). Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. Journal of Geodynamics, 52(1), 70-82.
  • Karabıyıkoğlu, M., Çiner, A., Monod, O., Deynoux, M., Tuzcu, S., & Örçen, S. (2000). Tectonosedimentary evolution of the Miocene Manavgat Basin, western Taurides, Turkey. In E. Bozkurt, J.A. Winchester & J.D.A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area (Vol. 173, pp. 271-294). Geological Society, London, Special Publication. https://doi.org/10.1144/GSL. SP.2000.173.01.14
  • Karabıyıkoğlu, M., Tuzcu, S., Çiner, A., Deynoux, M., Örçen, S. & Hakyemez, A. (2005). Facies and environmental setting of the Miocene coral reefs in the late- orogenic fill of the Antalya Basin, western Taurides, Turkey: implications for tectonic control and sea-level changes. Sedimentary Geology, 173(1-4), 345-371.
  • Kaymakci, N., Inceöz, M., Ertepinar, P. & Koç, A. (2010). Late Cretaceous to recent kinematics of SE Anatolia (Turkey). In M. Sosson, N. Kaymakci, R. Stephenson, V. Starostenko & F. Bergerat, F. (Eds.), Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol:340, pp. 409-435) Geological Society London Special Issue. https://doi.org/10.1144/SP340.18
  • Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A.A., Gülyüz, E., Uzel, B. & Sözbilir, H. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101-115.
  • Kempler, D. & Ben-Avraham, Z., 1987. The tectonic evolution of the Cyprean Arc. Annales Tectonicae, 1, 58-71
  • Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subductionaccretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24).
  • Khair, K. & Tsokas, G.N. (1999). Nature of the Levantine (eastern Mediterranean) crust from multiple-source Werner deconvolution of Bouguer gravity anomalies. Journal of Geophysical Research: Solid Earth, 104(B11), 25469-25478.
  • Kissel, C. & Laj, C. (1988). The Tertiary geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics, 146(1-4), 183-201.
  • Koç, A., Kaymakçı, N., van Hinsbergen, D.J., Kuiper, K.F. & Vissers, R.L. (2012). Tectono-Sedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey. Tectonophysics, 532, 134-155.
  • Koç, A., van Hinsbergen, D.J., Kaymakçı, N. & Langereis, C.G. (2016a). Late Neogene oroclinal bending in the central Taurides: A record of terminal eastward subduction in southern Turkey?. Earth and Planetary Science Letters, 434, 75-90.
  • Koç, A., Kaymakçı, N., Van Hinsbergen, D.J., & Vissers, R.L. (2016b). A Miocene onset of the modern extensional regime in the Isparta Angle: constraints from the Yalvaç Basin (southwest Turkey). International Journal of Earth Sciences, 105(1), 369-398.
  • Koç, A., Kaymakçı, N., van Hinsbergen, D.J. & Kuiper, K.F. (2017). Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau. Global and Planetary Change, 158, 83- 102.
  • Koçyiğit, A. & Saraç, G. (2000). Episodic graben formation and extensional neotectonic regime in west Central Anatolia and the Isparta Angle: a case study in the Akşehir-Afyon Graben, Turkey. Geological Society, London, Special Publications, 173(1), 405-421.
  • Koşun, E. (2012). Facies characteristics and depositional environments of Quaternary tufa deposits, Antalya, SW Turkey. Carbonates and evaporites, 27(3-4), 269-289.
  • McKenzie, D.P. (1972). Active tectonics of the mediterranean region. Geophysical Journal International, 30(2), 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • McKenzie, D.P. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25-32.
  • Meijers, M. J., Peynircioğlu, A.A., Cosca, M.A., Brocard, G.Y., Whitney, D.L., Langereis, C.G. & Mulch, A. (2018). Climate stability in central Anatolia during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 498, 53-67.
  • Mercier, J.L., Sorel, D. & Vergely, P. (1989). Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Research, 2, 49-71.
  • Monod, O. (1977). Recherches Geologiques dans le Taurus occidental au Sud de Beyşehir (Turquie) [Unpublished doctoral dissertation]. Université Paris Sud (Orsay).
  • Oberhänsli, R., Bousquet, R., Candan, O. & Okay, A.I. (2012). Dating subduction events in east Anatolia, Turkey. Turkish Journal of Earth Sciences, 21(1), 1-17.
  • Okay, A.I. (1986). High-Pressure/low-Tempemture Metamorphic Rocks of Turkey. In B.W. Evans, E.H. Brown (Eds.), Blueschists and Eclogites. Geological Society of America Memoir 164. https://doi.org/10.1130/MEM164-p333
  • Okay, A.I., Satır, M., Maluski, H., Siyako, M., Monié, P., Metzger, R. & Akyuz, H.S. (1996). Paleoand Neo-Tethyan events in northwest Turkey: geological and geochronological constraints. In A.Yin & T.M. Harrison (Eds.), The Tectonic Evolution of Asia Tectonics of Asia (pp.420-441). Cambridge University Press.
  • Okay, A.I., Zattin, M. & Cavazza, W. (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology, 38(1), 35-38.
  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.
  • Öğretmen, N., Cipollari, P., Frezza, V., Faranda, C., Karanika, K., Gliozzi, E., Radeff, G. & Cosentino, D. (2018). Evidence for 1.5 km of uplift of the Central Anatolian Plateau’s southern margin in the last 450 kyr and implications for its multiphased uplift history. Tectonics, 37(1), 359-390.
  • Özgül, N.,1976. Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeoloji Kurumu Bülteni 19(1), 65-78.
  • Özgül, N., 1984. Stratigraphy and tectonic evolution of the central Taurus. In O. Tekeli & M.C. Göncüoğlu, (Eds.), Geology of the Taurus Belt (pp. 77-90). MTA, Ankara..
  • Papadopoulos, G.A., Kondopoulou, D.P., Leventakis, G.A. & Pavlides, S.B. (1986). Seismotectonics of the Aegean region. Tectonophysics, 124(1-2), 67-84.
  • Papazachos, B.C. & Papaioannou, C.A. (1999). Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics, 308(1-2), 193-204.
  • Poisson, A. (1977). Recherches géologiques dans les Taurides occidentales (Turquie) [Unpublished doctoral dissertation]. Université de Paris-Sud, Orsay, France.
  • Poisson, A., Wernli, R., Saǧular, E. K., & Temı̇z, H. (2003a). New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geological Journal, 38(3-4), 311-327.
  • Poisson, A., Yağmurlu, F., Bozcu, M. & Şentürk, M., (2003b). New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal, 38(3-4), 257-282.
  • Poisson, A., Orszag-Sperber, F., Kosun, E., Bassetti, M.A., Müller, C., Wernli, R. & Rouchy, J.M., 2011. The Late Cenozoic evolution of the Aksu basin (Isparta Angle; SW Turkey). New insights. Bulletin de la Société Géologique de France, 182(2), 133-148.
  • Pourteau, A., Candan, O. & Oberhänsli, R. (2010). High-pressure metasediments in central Turkey: Constraints on the Neotethyan closure history. Tectonics, 29(5), Article TC5004. https://doi.org/10.1029/2009TC002650
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H. Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R. & Karam, G. 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, Article B05411, 1-26. https://doi.org/10.1029/2005JB004051
  • Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S. & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488(1-4), 22-30.
  • Robertson, A.H.F. (2000). Mesozoic-Tertiary tectonicsedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. Geological Society, London, Special Publications, 173(1), 97-138.
  • Robertson, A.H.F., Clift, P.D., Degnan, P.J. & Jones, G. (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4), 289-343.
  • Robertson, A.H.F. & Dixon, J.E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17(1), 1-74.
  • Robertson, A.H.F. & Ustaömer, T. (2009). Formation of the Late Palaeozoic Konya Complex and comparable units in southern Turkey by subduction–accretion processes: Implications for the tectonic development of Tethys in the Eastern Mediterranean region. Tectonophysics, 473(1-2), 113-148.
  • Robertson, A.H.F., Ustaömer, T., Pickett, E.A., Collins, A.S., Andrew, T. & Dixon, J. E. (2004). Testing models of Late Palaeozoic–Early Mesozoic orogeny in Western Turkey: support for an evolving open-Tethys model. Journal of the Geological Society, 161(3), 501-511.
  • Robertson, A.H.F. & Mountrakis, D. (2006). Tectonic development of the Eastern Mediterranean region: an introduction. Geological Society, London, Special Publications, 260(1), 1-9.
  • Robertson, A.H.F. & Woodcock, N.H. (1982). Sedimentary history of the south- western segment of the Mesozoic-Tertiary Antalya continental margin, south- western Turkey. Eclogae Geologicae Helvetiae, 75(3), 517-562.
  • Robertson, A.H.F. & Woodcock, N.H. (1984). The SW segment of the Antalya Complex, Turkey as a Mesozoic-Tertiary Tethyan continental margin. Geological Society, London, Special Publications, 17(1), 251-271.
  • Schildgen, T.F., Cosentino, D., Caruso, A., Buchwaldt, R., Yıldırım, C., Bowring, S.A. & Strecker, M.R (2012). Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey. Tectonics, 31 Article TC2005, 1-21
  • Schildgen, T.F., Yıldırım, C., Cosentino, D. & Strecker, M.R. (2014). Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Science Reviews, 128, 147-168.
  • Seyitoğlu, G., Scon, B. & Rundle, C.C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of Geological Society, London, 149(4), 533-538. https://doi.org/10.1144/gsjgs.149.4.0533
  • Seyitoğlu, G. & Scott, B. C. (1996). Age of the Alaşehir graben (west Turkey) and its tectonic implications. Geological Journal, 31(1), 1-11.
  • Stampfli, G. M. & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2), 17-33.
  • Storetvedt, K.M. (1990). The Tethys Sea and the Alpine-Himalayan orogenic belt; mega- elements in a new global tectonic system. Physics of the Earth and Planetary Interiors, 62(1-2), 141-184.
  • Şenel, M. (1997). 1:250.000 Scale Geological Maps of Turkey, No: 4, Isparta Sheet; N°3, Antalya Sheet. Mineral Research and Exploration Institute of Turkey (MTA) Publication, Ankara.
  • Şenel, M., Dalkiliç, H., Gedik, İ., Serdaroğlu, M., Bolukbaşi, A.S., Metin, S., Esentürk, K., Bilgin, A.Z., Uguz, F., Korucu, M. ve Özgül, N. (1992). 1:100.000 Ölçekli Türkiye Jeoloji Haritası Isparta J11 paftası. Maden Tetkik Arama Genel Müdürlüğü Yayınları No:14.
  • Şenel, M., Dalkılıç, H., Gedik, İ., Serdaroğlu, M., Metin, S., Esentürk, K. ve Özgül, N. (1998). Orta Toroslar’da Güzelsu koridoru ve kuzeyinin stratigrafisi, Türkiye. Maden Tetkik ve Arama Dergisi, 120, 171-198.
  • Şengör, A.M.C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N.Christie-Blick (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation. Society for Sedimentary Geology.
  • Şengör, A.M.C., Özeren, S., Genç, T. & Zor, E. (2003). East Anatolian high plateau as a mantlesupported, north-south shortened domal structure. Geophysical Research Letters, 30(24), 8045.
  • Şengör, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.
  • Taymaz, T., Eyidog̃an, H. & Jackson, J. (1991). Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International, 106(3), 537-550.
  • Tuzcu S. ve Karabıyıkoğlu M. (2001). Batı Toros Kuşağı Miyosen Mercan Resiflerinin Paleontolojisi Stratiğrafisi Fasiyesleri ve Çökelme Ortamları. (Rapor No:10438). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Üner, S., Özsayın, E., Kutluay, A. & Dirik, K. (2015). Polyphase tectonic evolution of the Aksu Basin, Isparta Angle (Southern Turkey). Geologica Carpathica, 66(2), 157-169.
  • Üner, S., Özsayın, E., Dirik, R.K., Çiner, T.A. & Karabıyıkoğlu, M. (2018). Reconstructing the sedimentary evolution of Miocene Aksu Basin based on fan delta development (eastern Mediterranean-Turkey). Turkish Journal of Earth Sciences 27, 32-48. https://doi.org/10.3906/yer-1705-21
  • Van Hinsbergen, D.J., Dekkers, M.J., Bozkurt, E. & Koopman, M. (2010a). Exhumation with a twist: Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics, 29(3), Article TC3009. https://doi.org/10.1029/2009TC002596
  • Van Hinsbergen, D.J., Dekkers, M.J. & Koç, A. (2010b). Testing Miocene remagnetization of Bey Dağları: Timing and amount of Neogene rotations in SW Turkey. Turkish Journal of Earth Sciences, 19(2), 123-156.
  • Wasoo, M. H. (2019). Comparison of strain ellipsoid shape based on the results of the magnetic susceptibility anisotropy and paleostress methods: case study of Aksu Basin (Antalya, SW Turkey) [Yayımlanmamış yüksek lisans tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü.
  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251-2
  • Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: the Gauss method. Journal of Structural Geology, 29(11), 1798-1810.