Su Altı Fotogrametri Yöntemi ve Kullanım Alanı Üzerine Bir Literatür Araştırması

Bu çalışmada; Su Altı Fotogrametri (SAF) yöntemleri ve kullanım alanları irdelenmiş, su altı fotogrametrisi ile alakalı yapılan çalışmalar araştırılmış ve genel bilgiler sunulmuştur. Su altı fotogrametrisi çeşitli amaçlar doğrultusunda kullanılmaktadır. En çok kullanıldığı alanların başında, su altında gemi enkazları gibi arkeolojik kalıntıların ve mercan resiflerinin 3B modellenmesi gelmektedir. Hareket ile Nesne Oluşturma (Structure from Motion-SfM) olarak bilinen nesnelerin hareketli kayıtlarından üç boyutlu (3B) verilerin üretilebildiği yöntem, su altı fotogrametrisinde de kullanılmaktadır. Ayrıca diğer fotogrametri yöntemlerinde kullanılan yazılımlar su altı fotogrametrisinde de kullanılabilmektedir. Fakat yapılan uygulamalarda: Diğer fotogrametri yöntemlerinde çekilen fotoğraflara göre su altında çekilen fotoğraflarda; yazılımlarda değerlendirilmeden önce renk ve kontrast düzeltmesi, gölgeleri kaldırma ve açık ton azaltma gibi bazı düzeltmelerin görüntü işleme ile uygulanması gerektiği öngörülmüştür. Diğer fotogrametri yöntemleri gibi su altı fotogrametrisi de teknolojik gelişmelere ayak uydurmuştur. Özellikle ilk başlarda dalgıçlar aracılığı ile uygulanan su altı fotogrametrisi günümüzde İnsansız Su Altı Araçları (İSAA)’nın kullanımı ile yeni bir ivme kazanmıştır. Bu çalışma ile su altında yapılan uygulamalar araştırılmış ve okuyuculara aktarılmıştır. Su altı fotogrametrisi literatürde kullanılsa da üç tarafı denizlerle çevrili Türkiye sınırları içerisinde çok az uygulama alanı bulmaktadır. Bu alanda çalışma yapacak araştırmacılara yönelik böyle bir eksiklik görüldüğü için su altı fotogrametrisi hakkında genel bir bakış yapılmıştır. 

A Literature Study on Underwater Photogrammetry Method and Usage Area

In this study; Underwater Photogrammetry (SAF) methods and their usage areas are discussed. Studies on underwater photogrammetry have been researched and general information has been presented. Underwater photogrammetry is used for various purposes. It is mostly used in 3D modeling of archaeological remains such as shipwrecks and coral reefs. The method known as Structure from Motion (SfM), in which three-dimensional (3D) data can be generated from motion records of objects, is also used in underwater photogrammetry. In addition, software used in other photogrammetry methods can also be used in underwater photogrammetry. But in the applications: There are differences in the photographs taken under water compared to the photographs taken in other photogrammetry methods. It was predicted that some corrections such as color and contrast correction, removing shadows and highlight reduction should be applied with image processing before being evaluated in software. Like other photogrammetry methods, underwater photogrammetry has kept pace with technological developments. Especially in the beginning, underwater photogrammetry, which was applied by divers, has gained a new momentum with the use of Unmanned Underwater Vehicles (UUV). With this study, underwater studies were researched and presented to researchers. Underwater photogrammetry also find little in the literature uses the application area within the borders of Turkey. Since such a deficiency was observed for researchers who will work in this field, general information about underwater photogrammetry was given.

___

  • Abdelaziz, M., & Elsayed, M. (2019). Underwater Photogrammetry Dıgıtal Surface Model (Dsm) Of The Submerged Sıte of the Ancıent Lıghthouse Near Qaıtbay Fort In Alexandrıa, Egypt. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Limassol, Cyprus, 2-10.
  • Ahmad, Z. B., Jinah, M. I. H. B. M., & Saad, S. B. (2020). Comparison of 3D Coral Photogrammetry and Coral Video Transect for Coral Lifeform Analysis Using Low-cost Underwater Action Camera. ASEAN Journal on Science and Technology for Development, 37(1), 15-20.
  • Balletti, C., Beltrame, C., Costa, E., Guerra, F., & Vernier, P. (2016). 3D Reconstruction of Marble Shipwreck Cargoes Based On Underwater Multi-Image Photogrammetry. Digital Applications in Archaeology and Cultural Heritage, 3(1), 1-8.
  • Balletti, C., Beltrame, C., Costa, E., Guerra, F., & Vernier, P., (2015). Underwater Photogrammetry and 3D Reconstruction of Marble Cargos Shipwreck. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 7-13.
  • Bandini, F., Sunding, T. P., Linde, J., Smith, O., Jensen, I. K., Köppl, C. J., ... & Bauer-Gottwein, P. (2020). Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sensing of Environment, 237, 111487.
  • Barrile, V., Fotia, A., Ponterio, R., & Aliotta, F. (2019). Photogrammetrıc Technıques for The Reconstructıon of Underwater 3d Models of Seabed and Artıfacts. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2(10), 25-30.
  • Barsanti, S. G., Remondino, F., Fenández-Palacios, B. J., & Visintini, D. (2014). Critical Factors and Guidelines for 3D Surveying and Modelling İn Cultural Heritage. International Journal of Heritage in the Digital Era, 3(1), 141-158.
  • Beltrame, C., & Costa, E. (2018). 3D Survey and Modelling of Shipwrecks in Different Underwater Environments. Journal of Cultural Heritage, 29, 82-88.
  • Bojakowski, P., Bojakowski, K. C., & Naughton, P. (2015). A Comparison Between Structure from Motion and Direct Survey Methodologies on the Warwick. Journal of Maritime Archaeology, 10(2), 159-180.
  • Bruno, F., Lagudi, A., Barbieri, L., Cozza, M., Cozza, A., Peluso, R., ... & Skarlatos, D. (2019). Vırtual Tour in The Sunken" Vılla Con Ingresso A Protıro" Wıthın The Underwater Archaeologıcal Park Of Baıae. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
  • Canciani, M., Gambogi, P., Romano, F. G., Cannata, G., & Drap, P. (2003). Low cost digital photogrammetry for underwater archaeological site survey and artifact isertion. The case study of the Dolia wreck in Secche della Meloria-Livorno-Italia. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 5(12), 95-100.
  • Canlı, G. A., Kurtoğlu, İ., Canlı, M. O., & Tuna, Ö. S., (2015). Dünyada ve Ülkemizde İnsansız Su altı Araçları (İSAA AUV ve ROV) Tasarım Ve Uygulamaları. GİDB Dergisi (04), 43-75.
  • Capra, A., Castagnetti, C., Dubbini, M., Gruen, A., Guo, T., Mancini, F. T., & Troyer, M. (2017). High Accuracy Underwater Photogrammetric Surveying. In 3rd IMEKO International Conference on Metrology for Archeology and Cultural Heritage, 696-701.
  • Chiabrando, F., Lingua, A., Maschio, P., & Losè, L. T. (2017). The influence of flight planning and camera orientation in UAVs photogrammetry. A test in the area of Rocca San Silvestro (LI), TUSCANY. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 163.
  • Costa E., (2019). The Progress of Survey Techniques in Underwater Sites: The Case Study of Cape Stoba Shipwreck., The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(10), 69–75.
  • Doğan, Y. & Yakar, M. (2018). Gıs And Three-Dımensıonal Modelıng For Cultural Herıtages. International Journal of Engineering and Geosciences, 3 (2) , 50-55.
  • Drap, P. (2012). Underwater Photogrammetry for Archaeology. Special Applications of Photogrammetry, 114.
  • Drap, P., Merad, D., Hijazi, B., Gaoua, L., Nawaf, M. M., Saccone, M., & Castro, F. (2015). Underwater Photogrammetry and Object Modeling: A Case Study of Xlendi Wreck in Malta. Sensors, 15(12), 30351-30384.
  • Drap, P., Seınturıer, J., Hıjazı, B., & Merad, D., Boi, J. M., Chemisky, B., & Long, L. (2015). The ROV 3D Project: Deep-Sea Underwater Survey Using Photogrammetry: Applications for Underwater Archaeology. ACM Journal on Computing and Cultural Heritage (JOCCH), 8(4), 1-24.
  • Drap, P., Seinturier, J., Scaradozzi, D., Gambogi, P., Long, L., & Gauch, F. (2007). Photogrammetry for Virtual Exploration of Underwater Archeological Sites. In Proceedings of the 21st international symposium, CIPA, 1-6.
  • Figueira, W., Ferrari, R., Weatherby, E., Porter, A., Hawes, S., & Byrne, M. (2015). Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sensing, 7(12), 16883-16900.
  • Gruen, A., Kocaman, S., Guo, T., Ural, S., & Troyer, M. (2017). DSM/DTM–Related Investigations of The Moorea Avatar Project. In 38th Asian Conference On Remote Sensing, 23-27.
  • Guo, T., Capra, A., Troyer, M., Grün, A., Brooks, A. J., Hench, J. L., & Dubbini, M. (2016). Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B5), 821-828.
  • Hamal, S. N. G., Sarı, B., & Ulvi, A. (2020). Using of Hybrid Data Acquisition Techniques for Cultural Heritage a Case Study of Pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • Henderson, J., Pizarro, O., Johnson‐Roberson, M., & Mahon, I. (2013). Mapping Submerged Archaeological Sites Using Stereo‐Vision Photogrammetry. International Journal of Nautical Archaeology, 42(2), 243-256.
  • Kaya, F. Z., Akçay, Ö., Avşar, E. Ö., & Aydar, U. (2019). Su altı fotogrametrik belgelemede güncel uygulamalar.
  • Kocaman, S., Guo, T., Gruen, A., & Troyer, M. (2017). Ada Dijital Ekosistem Avatari (Idea) Projesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 183-189.
  • Korumaz, A. G., Dülgerler, O. N., & Yakar, M. (2011). Kültürel mirasın belgelenmesinde dijital yaklaşımlar.
  • Köseoğlu, F., & Kocaman, S. (2018). Mercan Resiflerinin Su altı Fotogrametrisi İle 3 Boyutlu Modellenmesi.
  • Kwon, Y. H., & Casebolt, J. B. (2006). Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis. Sports biomechanics, 5(2), 315-340.
  • Lallensack, J. N., Buchwitz, M., & Romilio, A. (2020). Photogrammetry in ichnology: 3D model generation, visualisation, and data extraction.
  • Lavest, J. M., Rives, G., & Lapresté, J. T. (2003). Dry Camera Calibration for Underwater Applications. Machine Vision and Applications, 13(5-6), 245-253.
  • Liarokapis, F., Kouřil, P., Agrafiotis, P., Demesticha, S., Chmelik, J., & Skarlatos, D. (2017). 3D Modelling and Mapping for Virtual Exploration of Underwater Archaeology Assets. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 425.
  • Marre, G., Holon, F., Luque, S., Boissery, P., & Deter, J. (2019). Monitoring marine habitats with photogrammetry: a cost-effective, accurate, precise and high-resolution reconstruction method. Frontiers in Marine Science, 6, 276.
  • Menna, F., Nocerino, E., Fassi, F., & Remondino, F. (2016). Geometric and optic characterization of a hemispherical dome port for underwater photogrammetry. Sensors, 16(1), 48.
  • Özdemir, C. (2020). Radar Cross Sectıon Analysıs Of Unmanned Aerıal Vehıcles Usıng Predıcs. International Journal of Engineering and Geosciences, 5 (3) , 144-149.
  • Quattrini, R., Pierdicca, R., Frontoni, E., & Barcaglioni, R. (2016). Vırtual Reconstructıon of Lost Archıtectures: From The TLS Survey to AR Visualization. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 383-390.
  • Sarı, B., Hamal, S. N. G., & Ulvi, A. (2020). Documentation of complex structure using Unmanned Aerial Vehicle (UAV) photogrammetry method and Terrestrial Laser Scanner (TLS). Türkiye Lidar Dergisi, 2(2), 48-54.
  • Şasi, A. & Yakar, M. (2018). Photogrammetrıc Modellıng Of Hasbey Dar'ülhuffaz (Masjıd) Usıng An Unmanned Aerıal Vehıcle. International Journal of Engineering and Geosciences, 3 (1) , 6-11.
  • Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6 (2) , 81-89.
  • Su altı Federasyonu, (2020). https://tssf.gov.tr/ [Erişim Tarihi: 20 Mayıs 2020].
  • Su altı Kültürel Mirası İzleme Grubu, (2020). UNESCO Türkiye Millî Komisyonu, http://www.unesco.org.tr/Pages/57/20/Sualt%C4%B1-K%C3%BClt%C3%BCrel-Miras%C4%B1-%C4%B0zleme-Grubu [Erişim Tarihi: 20 Mayıs 2020].
  • T.C. Cumhurbaşkanlığı, Mevzuat Bilgi Sistemi, (2020). Kültür Ve Tabiat Varlıklarını Koruma Kanunu, https://www.mevzuat.gov.tr/MevzuatMetin/1.5.2863.pdf (madde 3, a bendi)[Erişim Tarihi: 20 Mayıs 2020].
  • Taşdemir, S., & Özkan, İ. (2019). Ann Approach For Estimation Of Cow Weight Depending On Photogrammetric Body Dimensions. İnternational Journal of Engineering and Geosciences, 4 (1) , 36-44.
  • Telem, G., & Filin, S. (2010). Photogrammetric modeling of underwater environments. ISPRS journal of photogrammetry and remote sensing, 65(5), 433-444.
  • Treibitz, T., Schechner, Y., Kunz, C., & Singh, H. (2011). Flat refractive geometry. IEEE transactions on pattern analysis and machine intelligence, 34(1), 51-65.
  • Ulusal Kar ve Buz Veri Merkezi, (2020). https://nsidc.org/ [Erişim Tarihi: 20 Mayıs 2020].
  • Ulvi, A. (2018). Analysis Of The Utility Of The Unmanned Aerial Vehicle(UAV) in Volume Calculatıon By Using Photogrammetric Technıques. International Journal of Engineering and Geosciences, 3 (2) , 43-49.
  • Ulvi, A., & Toprak, A. S. (2016). Investigation of Three-Dimensional Modelling Availability Taken Photograph of the Unmanned Aerial Vehicle; Sample of Kanlıdivane Church. International Journal of Engineering and Geosciences, 1(1), 1-7.
  • Ulvi, A., Yakar, M., Yiğit, A. Y., & Kaya, Y. (2020). İHA ve Yersel Fotogrametrik Teknikler Kullanarak Aksaray Kızıl Kilise’nin 3 Boyutlu Nokta Bulutu ve Modelinin Üretilmesi. Geomatik Dergisi, 5 (1), 22-30.
  • Ulvi, A., Yakar, M., Yiğit, A., & Kaya, Y. (2019). The Use of Photogrammetric Techniques İn Documenting Cultural Heritage: The Example of Aksaray Selime Sultan Tomb. Universal Journal of Engineering Science, 7(3), 64-73.
  • Ünal, M., Yakar, M., & Yildiz, F. (2004). Discontinuity surface roughness measurement techniques and the evaluation of digital photogrammetric method. In Proceedings of the 20th international congress for photogrammetry and remote sensing, ISPRS, 1103-1108.
  • Van Damme, T. (2015). Computer Vısıon Photogrammetry for Underwater Archaeologıcal Sıte Recordıng in A Low-Vısıbılıty Envıronment. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 231-238.
  • Yakar, İ., Çelik, M. Ö., Hamal, S. N. G., & Bilgi, S. (2020). Kültürel mirasın dokümantasyonu çalışmalarında farklı yazılımların karşılaştırılması: Dikilitaş (Theodosius Obeliski) Örneği. Geomatik, 6(3), 217-226.
  • Yakar, M., Kabadayı, A., Yiğit, A. Y., Çıkıkcı, K., Kaya, Y., & Catin, S. S. (2016). Emir Saltuk Kümbeti Fotogrametrik Rölöve Çalişmasi Ve 3Boyutlu Modellenmesi. Geomatik, 1(1), 14-18.
  • Yakar, M., Yıldız, F., & Yılmaz, H. M. (2005). Tarihi Ve Kültürel Miraslarin Belgelenmesinde Jeodezi Fotogrametri Mühendislerinin Rolü. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Yiğit A Y, Kaya Y & Kabadayı A (2020). Comparison of Documenting Cultural Artifacts with the 3D Model in Different Software. Mersin Photogrammetry Journal, 2 (2), 51-58.
  • Yılmaz, H. M., Mutluoğlu, Ö., Ulvi, A., Yaman, A., & Bilgilioğlu, S. S. (2018). İnsansız Hava Aracı İle Ortofoto Üretimi ve Aksaray Üniversitesi kampüsü örneği. Journal of Geomatics, 3(2), 103-110.