Yaban tip ve rekombinant omurgasız iridesan virüslerinin beş yaygın zararlı üzerindeki böcek öldürücü aktiviteleri

Omurgasız iridesan virüs 6 (IIV6), çeşitli zararlı böcek türlerini düşük oranda enfekte edebilir. Rekombinant DNA teknolojisi ile oluşturulan yeni özelliklere sahip virüsler biyolojik kontrol ajanları olarak etkin bir şekilde kullanılabilir. Daha önce IIV6 157L ORF’si yerine birisi yeşil floresan protein geni (rCIV-Δ157L-gfp) ve diğeri de gfp ile birleştirilmiş bir akrep Androctonus australis (Linnaeus, 1758) böcek toksin geni (rCIV-Δ157L/gfp-AaIT) ihtiva eden iki rekombinant IIV6 inşa edilmişti. Bu çalışmada, yaban tip IIV6 ve iki rekombinant virüs, Helicoverpa armigera (Hübner, 1805) (Lepidoptera: Noctuidae), Spodoptera littoralis (Boisduval, 1883) (Lepidoptera: Noctuidae), Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae), Euproctis chrysorrhoea (Linnaeus, 1758) (Lepidoptera: Erebidae) ve Tenebrio molitor (Linnaeus, 1758) (Coleoptera: ‎Tenebrionidae) larvalarında enfeksiyon oluşturma yeteneği açısından değerlendirildi. Çalışma 2018 ve 2019 yılları arasında Karadeniz Teknik Üniversitesi Biyoloji Bölümü'nde gerçekleştirildi. Her bir böcek larvasını enjekte etmek için virüslerin beş farklı konsantrasyonu (103, 104, 105, 106 ve107 TCID50/ml) kullanıldı. rCIV-Δ157L/gfp-AaIT ile enfekte olmuş S. littoralis dışında tüm larvalar felç oldu. rCIV-Δ157L/gfp-AaIT ile enfekte olmuş böcek larvalarının LC50'si sırasıyla, S. littoralis, T. molitor, L. dispar, H. armigera ve E. chrysorrhoea üzerinde 0.3 x 107, 0.7 x 105, 0.2 x 105, 0.15 x 105, 0.7 x 104 TCID50/ml olarak belirlenmiştir. En yüksek virüs konsantrasyonlarına göre hesaplanan LT50 değerleri, rCIV-Δ157L/gfp-AaIT için S. littoralis, T. molitor, L. dispar, H. armigera ve E. chrysorrhoea'da sırasıyla 10.5, 6.2, 4.7, 7.5 ve 5 gün olarak bulundu. Bu çalışma, rekombinant IIV6'nın Lepidoptera ve Coleoptera takımlarına ait bazı böceklerde patojeniteyi artırdığını göstermiştir.

Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests

Invertebrate iridescent virus 6 (IIV6) can infect a broad range of pest insect species. Viruses with new features created by recombinant DNA technology can be used effectively as biological control agents. Previously, recombinants have been constructed: IIVs harboring green fluorescent protein gene (gfp) in place of IIV6 157L ORF (rCIV-Δ157L-gfp) and a scorpion Androctonus australis (Linnaeus, 1758) insect toxin gene (AaIT) fused with gfp (rCIV-Δ157L/gfp-AaIT). In this study, wild type IIV6 and the two recombinants, were evaluated for their ability to cause infections on Helicoverpa armigera (Hübner, 1805) (Lepidoptera: Noctuidae), Spodoptera littoralis (Boisduval, 1883) (Lepidoptera: Noctuidae), Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae), Euproctis chrysorrhoea (Linnaeus, 1758) (Lepidoptera: Erebidae) and Tenebrio molitor (Linnaeus, 1758) (Coleoptera: ‎Tenebrionidae) larvae. This study was performed at Karadeniz Technical University, Department of Biology during 2018 and 2019. Five different concentrations (103, 104, 105, 106 and 107 TCID50/ml) of viruses were used to inject each insect larvae. All larvae, infected with rCIV-Δ157L/gfp-AaIT, became paralyzed, except S. littoralis. The LC50 of insect larvae infected by rCIV-Δ157L/gfp-AaIT were determined as 0.3 x 107, 0.7 x 105, 0.2 x 105, 0.15 x 105, 0.7 x 104 TCID50/ml on S. littoralis, T. molitor, L. dispar, H. armigera and E. chrysorrhoea, respectively. LT50 values, calculated according to the highest virus concentrations, were found as 10.5, 6.2, 4.7, 7.5 and 5 d on S. littoralis, T. molitor, L. dispar, H. armigera and E. chrysorrhoea, respectively, for rCIV-Δ157L/gfp-AaIT. This study showed that recombinant IIV6 has increased pathogenicity on some insects from Lepidoptera and Coleoptera.

___

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Bergomaz, R. & M. Boppré, 1986. A simple instant diet for rearing Arctiidae and other moths. Journal of the Lepidopterists' Society, 40 (3): 131-137.
  • Chinchar, V. G., P. Hick, I. A. Ince, J. K. Jancovich, R. Marschang, Q. Qin, K. Subramaniam, T. B. Waltzek, R. Whittington, T. Williams & Q. Y. Zhang, 2017. ICTV virus taxonomy profile: Iridoviridae. Journal of General Virology, 98 (5): 890-891.
  • Deng, S. Q., J. T. Chen, W. W. Li, M. Chen & H. J. Peng, 2019. Application of the scorpion neurotoxin AaIT against insect pests. International Journal of Molecular Sciences, 20 (14): 3467.
  • Elazar, M., R. Levi & E. Zlotkin, 2001. Targeting of an expressed neurotoxin by its recombinant baculovirus. Journal of Experimental Biology, 204 (15): 2637-2645.
  • Finney, D. J., 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, Cambridge, England, 256 pp.
  • Fukuda, T., 1971. Per os transmission of Chilo iridescent virus to mosquitoes. Journal of Invertebrate Pathology, 18 (1): 152-153.
  • Gencer, D., Z. Bayramoglu, R. Nalcacioglu, R. G. Kleespies, Z. Demirbag & I. Demir, 2018. Characterisation of three Alphabaculovirus isolates from the gypsy moth, Lymantria dispar dispar (Lepidoptera: Erebidae), in Turkey. Biocontrol Science and Technology, 28 (2): 107-121.
  • Henderson, C. W., C. L. Johnson, S. A. Lodhi & S. L. Bilimoria, 2001. Replication of Chilo iridescent virus in the cotton boll weevil, Anthonomus grandis, and development of an infectivity assay. Archives of Virology, 146 (4): 767-775.
  • Hierholzer, J. C. & R. A. Killington, 1996. “Virus Isolation and Quantitation, 25-46” In: Virology Methods Manual (Eds. B. W. Mahy & H. I. Kangro), Virology Methods Manual Academic Press, London, 374 pp.
  • Hunter, W. B., S. L. Lapointe, X. H. Sinisterra, D. S. Achor & C. J. Funk, 2003. Iridovirus in the root weevil Diaprepes abbreviatus. Journal of Insect Science, 3 (9): 1-6.
  • İnce, İ. A., M. Westenberg, J. M. Vlak, Z. Demirbağ, R. Nalçacioğlu & M. M. van Oers, 2008. Open reading frame 193R of Chilo iridescent virus encodes a functional inhibitor of apoptosis (IAP). Virology, 376 (1): 124-131.
  • Jakob, N. J., R. G. Kleespies, C. A. Tidona, K. Müller, H. R. Gelderblom & G. Darai, 2002. Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. Journal of General Virology, 83 (2): 463-470.
  • Jenkins, D., W. Hunter & R. Goenaga, 2011. Effects of Invertebrate Iridescent Virus 6 in Phyllophaga vandinei and its potential as a biocontrol delivery system. Journal of Insect Science, 11 (44): 1-10.
  • Jensen, D. D., T. Hukuhara & Y. Tanada, 1972. Lethality of Chilo iridescent virus to Colladonus montanus leafhoppers. Journal of Invertebrate Pathology, 19 (2): 276-278.
  • Kalha, C. S., P. P. Singh, S. S. Kang, M. S. Hunjan, V. Gupta & R. Sharma, 2014. ‘’Entomopathogenic Viruses and Bacteria for Insect-Pest Control, 225-244’’. In: Integrated Pest Management: Current Concepts and Ecological Perspective (Ed. D. P. Abrol). Academic Press, San Diego, 576 pp.
  • Kelly, D. C., M. D. Ayres & T. Lescott, 1979. A small iridescent virus (type 29) isolated from Tenebrio molitor: a comparison of its proteins and antigens with six other iridescent viruses. Journal of General Virology, 42 (1): 95-105.
  • Kim, S. Y., H. G. Kim, H. J. Yoon, K. Y. Lee & N. J. Kim, 2017. Nutritional analysis of alternative feed ingredients and their effects on the larval growth of Tenebrio molitor (Coleoptera: Tenebrionidae). Entomological Research, 47 (3): 194-202.
  • Maeda, S., S. L. Volrath, T. N. Hanzlik, S. A. Harper, K. Majima, D. W. Maddox, B. D. Hammock & E. Fowler, 1991. Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology, 184 (2): 777-780.
  • Marina, C. F., J. I. J. E. Arredondo-Jimenez, J. E. Ibarra, I. Fernandez-Salas & T. Williams, 2003. Effects of an optical brightener and an abrasive on iridescent virus infection and development of Aedes aegypti. Entomologia Experimentalis et Applicata, 109 (2): 155-161.
  • McCutchen, B. F., P. V. Choudary, R. Crenshaw, D. Maddox, S. G. Kamita, N. Palekar, S. Volrath, E. Fowler, B. D. Hammock & S. Maeda, 1991. Development of a recombinant baculovirus expressing an insect-selective neurotoxin: Potential for pest control. Bio/Technology, 9 (9): 848-852.
  • Mitsuhashi, J., 1967. Infection of leafhopper and its tissues cultivated in vitro with Chilo iridescent virus. Journal of Invertebrate Pathology, 9 (3): 432-434.
  • Nalcacioglu, R., H. Muratoglu, A. Yesilyurt, M. M. van Oers, J. M. Vlak & Z. Demirbag, 2016. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. Journal of Invertebrate Pathology, 138: 104-111.
  • Ohba, M., 1975. Studies on the parthogenesis of Chilo iridescent virus 3. Multiplication of CIV in the silkworm Bombyx mori L. and field insects. Scientific Bulletin of the Faculty of Agriculture Kyushu University, 30: 71-81.
  • Ozgen, A., H. Muratoglu, Z. Demirbag, J. M. Vlak, M. M. van Oers & R. Nalcacioglu, 2014. Construction and characterization of a recombinant invertebrate iridovirus. Virus Research, 189: 286-292.
  • Razvi, E. S. & R. M. Welsh, 1995. Apoptosis in viral infections. Advanced Virus Research, 45: 1-60.
  • Treacy, M. F. & J. N. All, 1996. Impact of insect-specific AaHIT gene insertion on inherent bioactivity of baculoviruses against tobacco budworm, Heliothis virescens, and cabbage looper, Trichoplusia ni. Beltwide Cotton Conferences, 2: 911-917.
  • Williams, T., 2008. Natural invertebrate hosts of iridovirases (iridoviridae). Neotropical Entomology, 37 (6): 615-632.
  • Williams, T., V. Barbosa-Solomieu & V. G. Chinchar, 2005. A decade of advances in iridovirus research. Advances in Virus Research, 65: 173-248.
  • Yao, B., Y. Pang, Y. Fan, R. Zhao, Y. Yang & T. Wang, 1996. Construction of an insecticidal baculovirus expressing insect-specific neurotoxin AaIT. Science China Life Sciences, 39 (2): 199-206.
Türkiye Entomoloji Dergisi-Cover
  • ISSN: 1010-6960
  • Başlangıç: 1977
  • Yayıncı: Galip KAŞKAVALCI
Sayıdaki Diğer Makaleler

Nadir bir et sineği türü, Sarcophaga (Latistyla) czernyi Böttcher, 1912 (Diptera: Sarcophagidae)’nin erkek terminalyası ultrastrüktürüyle yeniden tanımlanması

Gamze PEKBEY

Helochares Mulsant, 1844 ve Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae) cinslerinin yağ asiti kompozisyonuna taksonomik bir yaklaşım

Fatma CAF, Günay YILDIZ, Nurgül SEN ÖZDEMİR, Abdullah MART

Amphimallon solstitiale Linnaeus, 1758 (Coleoptera: Scarabaeidae)’nin fungal patojenleri

Seda BİRYOL, Davut EFE, Ardahan ESKİ, Zihni DEMİRBAĞ, İsmail DEMİR

Thrips meridionalis (Priesner, 1926) (Thysanoptera: Thripidae)’in renkli tuzaklar ile tespiti ve izlenmesi

Gökhan AYDIN, Martin ŠLACHTA, İsmail KARACA

Tetranychus urticae (Koch, 1836) (Acari: Tetranychidae)’ye karşı üç bitkisel yağın akarisit, uzaklaştırıcı ve yumurta bırakma engelleyici özellikleri üzerine laboratuvar çalışması

Gizem KESKİN, Nabi Alper KUMRAL, Oya KAÇAR

Globodera rostochiensis (Wollenweber, 1923) Skarbilovich, 1959 (Tylenchida: Heteroderidae)’in Türkiye popülasyonlarının tanımlanması, yaygınlık ve genetik çeşitliliği

Ahmet ALTAŞ, Emre EVLİCE, Göksel ÖZER, Abdelfattah DABABAT, Mustafa İMREN

Türkiye’den Drusilla Leach, 1819 (Coleoptera: Staphylinidae: Aleocharinae) cinsine bağlı yeni bir tür ve ek kayıtlar

Semih ÖRGEL

Türkiye'den Cassida viridis Linnaeus, 1758 (Coleoptera: Chrysomelidae: Cassidinae)'in aedeagus ve spermatekaları üzerine bir SEM çalışması

Neslihan BAL

Türkiye Nematinae (Hymenoptera: Symphyta: Tenthredinidae) faunası için yeni kayıtlar ve bazı yeni dağılımlar

Önder ÇALMAŞUR

Anadolu'da bulunan bal arılarının otuz polimorfik mikrosatellit belirteçleri açısından güncel genetik durumları

Kemal KARABAĞ, Rahşan İVGİN TUNCA, Emel TÜTEN, Taylan DOĞAROĞLU