Tetranychus urticae Koch 1836'nın hassas ve dirençli ırklarının ve karşılıklı F1 çapraz melezlerinin yaşam tablosu parametreleri üzerine propargite’in pleiotropik etkileri ve bunların popülasyon gelişimi üzerine çıkarımlar

Demografik toksikolojik çalışmalar ya da yaşam tablosu tepki denemeleri, tarlada insektisit etkisini öngörmek için daha güvenilir bir yaklaşım olarak önerilmektedir. Tetranychus urticae Koch, 1836 (Prostigmata: Tetranychidae)'nin hassas, propargite karşı dirençli ve karşılıklı F1 çapraz melezlerinin yaşam tablosu parametreleri, Lincoln Üniversitesi (Yeni Zelanda)’de hassas ırkın LC50 ve LC99'unda propargite kalıntılarının varlığında ve yokluğunda çalışılmıştır. Tüm bireylerin yaşam tablosu verileri, yaş-evre, iki cinsiyetli yaşam tablosu kullanılarak analiz edilmiştir. Duyarlı ırkın LC50 değerleri, herhangi bir ırkta gelişim zamanını etkilememiştir. Bununla birlikte, hassas ırkın LC99'u, propargite dirençli ırkın gelişim süresini yaklaşık iki gün uzatmıştır. Duyarlı ırkın LC50 değerleri, propargite dirençli ırkın ve S♂ × R♀ hibridinin kalıtsal üreme yeteneği (rm), Ro ve toplam döl verimi, hassas ırk ve R♂ × S♂hibritine kıyasla daha yüksek bulunmuştur. Popülasyon tahminleri, T. urticae'nin ırkları / melezlerinin yaşam tablosu parametrelerindeki nispeten küçük farklılıkların etkilerini incelemek için kullanılmıştır. Uygulama yapılmayan kontrol grupları için hassas ırk 10 dölden sonra en yüksek popülasyon tahminini vermiştir. Duyarlı ırkın LC50 değeri uygulanan gruplarda, tahmin edilen popülasyon büyüklüğü, propargite dirençli ırkın ergin dişi sayısının, hassas ırkın yerine geçtiğini göstermiştir. Hibrid S♂ × R♀, hassas ırkın LC50'si ile uygulamadan en fazla artmıştır. Bu yüzden, farklı ırkların kademeli başarısı, bir bölgede yetiştirme sezonu boyunca direnç sıklığını değiştirebilir.

Pleiotropic effects of propargite on life-table parameters of susceptible and resistant strains and reciprocal F1 hybrids of Tetranychus urticae Koch, 1836 and their implications for population growth

Demographic toxicological studies or life-table response experiments have been proposed as a more reliable approach for predicting pesticide impact in the field. Life-table parameters of the susceptible, propargite-resistant and reciprocal F1 hybrids of Tetranychus urticae Koch, 1836 (Prostigmata: Tetranychidae) were studied in the presence and absence of propargite residues at LC50 and LC99 of susceptible strain at Lincoln University, New Zealand. The life history data of all individuals were analyzed using the age-stage, two-sex life table. Treatment with LC50 of the susceptible strain did not affect the duration of developmental time of any strain. LC99 of the susceptible strain, however, prolonged the developmental time of the propargite-resistant strain by approximately 2 d. The intrinsic rate of increase (rm), Ro and total progeny production of the propargite-resistant strain and S♂ × R♀hybrid treated with LC50 of the susceptible strain were higher compared to that of the susceptible strain and R♂ × S♀ hybrid. Population projections were used to study the effects of relatively small differences in the life-table parameters of strains/hybrids of T. urticae. For the untreated control groups, the susceptible strain gave the highest population projection after 10 generations. In groups treated with LC50 of the susceptible strain, the projected population size showed that the number of adult females of the propargite-resistant strain superseded that of the susceptible strain. The hybrid S♂ × R♀ increased most from treatment with the LC50 of the susceptible strain. The differential success of different strains could, therefore, change resistance frequency throughout a growing season at a location.

___

  • Andres, L. A., 1957. An Ecological Study of Three Species of Tetranychids (Acarina: Tetranychidae) and Their Response to Temperature and Humidity. University of California, (Unpublished) PhD Thesis, Berkeley, USA, 49 pp.
  • Carey, J. R. & J. W. Bradley, 1982. Developmental rates, vital schedules, sex ratios and life tables for Tetranychus urticae, T. turkestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia, 23: 333-345.
  • Carey, J. R., 1993. Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press, New York, USA, 206 pp.   Chi, H. & H. Liu, 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica. 24: 225-240.
  • Chi, H., 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17: 26-34.
  • Chi, H., 2018. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. (Web page: http://140.120.197.173/Ecology/Download/TwosexMSChart.zip) (Date accessed: 8 May 2018).
  • Crow, J. F., 1957. Genetics of insecticide resistance to chemicals. Annual Review of Entomology, 2: 227-246.
  • Dennehy, T. J. & J. Granett, 1984. Monitoring dicofol resistant spider its (Acari: Tetranychidae) in California cotton. Journal of Economic Entomology, 77 (6): 1386-1392.
  • Frel, A., H. Gu, C. Cardona & S. Dorn, 2003. Antixenosis and antibiosis of common beans to Thrips palmi. Journal of Economic Entomology, 93: 1577-1584.
  • Haubruge, E. & L. Arnaud, 2001. Fitness consequences of malathion-specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of malathion. Journal of Economic Entomology, 94: 552-557.
  • Herron, G. & J. Rophail, 1993. Effect of clofentezine-hexythiazox resistance on life-table attributes of Tetranychus urticae Koch (Acari: Tetranychidae). Experimental and Applied Acarology, 17: 823-830.
  • Hoy, C. W., G. P. Head & F. R. Hall, 1998. Spatial heterogeneity and insect adaption to toxins. Annual Review Entomology, 43: 571-594.
  • Huang, Y. B. & H. Chi, 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an invalidation of the jackknife technique. Journal of Applied Entomology, 137: 327-339.
  • Kasamatsu, K. & M. Ogawa, 1992. Relative reproductivity of two spotted spider mite, Tetranychus urticae Koch selected by fenpropathrin. Japanese Journal of Applied Entomology and Zoology, 36 (4): 256-258.
  • Kheradmand, K., K. Kamali, Y. Fathipour & E. Mohammadi-Goltapeh, 2007. Development, life table and thermal requirement of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushrooms. Journal of Stored Products Research, 43: 276-281.
  • Kono, S., 1987. Reproductivity of dicofol susceptible and resistant strains in the two spotted spider mite, Tetranychus urticae Koch. Japanese Journal of Applied Entomology and Zoology, 31 (4): 333-338.
  • Laing, J. E., 1969. Life history and life table of Tetranychus urticae Koch. Acarologia, 32-42.
  • Meyer, J. S., C. G. Ingersoll, L. L. McDonald & M. S. Boyce, 1986. Estimating uncertainty in population growth rates: Jackknife vs. Bootstrap techniques. Ecology, 67 (5): 1156-1166.
  • Omer, A. D., T. F. Leigh & J. Granett, 1992. Insecticide resistance in field populations of greenhouse whitefly (Homoptera: Aleyrodidae) in the San Joaquin valley (California) cotton cropping system. Journal of Economic Entomology, 85 (1): 21-27.
  • Razmjou, J., H. Tvakoli & A. Fallahi, 2008. Effect of soybean cultivar on life history parameters of Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Pest Science, 82: 89-94.
  • Razmjou, J., H. Tvakoli & M. Nemati, 2009. Life history traits of Tetranychus urticae Koch on three legumes (Acari: Tetranychidae). Munis Entomology and Zoology, 4: 204-211.
  • Robertson, J. L. & H. K. Preisler, 1992. Pesticide Bioassays with Arthropods. CRC Press, Boca Raton, Florida, USA, 127 pp.
  • Robertson, J. L. & S. P. Worner, 1990. Population toxicology: suggestion for laboratory bioassays to predict pesticide efficacy. Journal of Economic Entomology, 83: 8-12.
  • Roush, R. T. & J. A. McKenzie, 1987. Ecological genetics of insecticide and acaricide resistance. Annual Review Entomology, 32: 361-380.
  • Roush, R. T. & J. C. Daly, 1990. “The Role of Population Genetics in Resistance Research and Management, 97-152”. In: Pesticides resistance in arthropods (Eds. R. T. Roush & B. E. Tabashnik), Chapman and Hall, New York, USA, 303 pp.
  • Sabelis, N. W., 1985. “Reproductive Strategies, 265-278”. In: Spider Mites: Their Biology, Natural Enemies and Control (Eds. W. Helle & M. V. Sabelis). Elsevier, Amsterdam, Netherlands, 406 pp. 
  • Saito, T., N. Sinchaisri, A. Vattanatungum, T. Miyata, W. Rushtapakorn-Chai, O. Sarnthoy, P. Kienmeesuke, F. Nakasuji, Y. Tsubaki, B. Saympol, P. A. C. Ooi, G. S. Lim & P. S. Teng, 1992. Challenge to diamondback moth resistance to insecticides. Proceedings of the 3rd International Conference on Plant Protection in the Tropics, 3: 157-164.
  • Sayyed, A. H., M. Ahmad & N. Crickmore, 2008. Fitness costs limit the development of resistance to indoxacarb and deltamethrin in Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 101: 1927-1933.
  • Schulten, G. G. M., 1968. Genetics of organophosphate resistance in the two-spotted mite (Tetranychus urticae Koch). Communication of the Department of Agricultural Research. Royal Tropical Institute, Amsterdam, 57: 1-57.
  • Sedaratian, A., Y. Fathipour & S. Moharramipour, 2011. Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes. Insect Science, 18: 541-553.
  • Shah, R. & S. P. Worner, 2018. Ambulatory dispersal of the susceptible and propargite-resistant strains of Tetranychus urticae and its influence on pesticide resistance dynamics. Journal of Asia-Pacific Entomology, 21: 75-80.
  • Shah, R., S. P. Worner & R. B. Chapman, 2002. Selection of a discriminating concentration (DC) for Propargite-resistance detection in Tetranychus urticae (Koch). Pakistan Journal of Biological Sciences, 5 (10): 1074-1076.
  • Shih, C., T. Sidney, L. Poe & H. L. Cromroy, 1976. Biology, life table and intrinsic rate of increase of Tetranychus urticae. Annals of Entomological Society of America, 69: 362-364.
  • Smirnova, O. I., 1987. Specificity of the formation of sevin resistance in ixodid ticks. Voprosy veterinarnoi toksikologii, entomologii i deratizatsii, 97-103.
  • Stark, J. D. & J. E. Banks, 2003. Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48: 505-519.
  • Trisyono, A. & M. E. Whalon, 1997. Fitness costs of resistance to Bacillus thuringiensis in Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 90 (2): 267-271.
  • Udeaan, A. S. & B. K. Judge, 1990. Biological characteristics of susceptible and phosphine-resistant strains of Trogoderma granarium Everts. Indian Journal of Ecology, 17 (1): 81-82.
  • Wang, D., X. Qiu, H. Wang, K. Qiao & K. Wang, 2010. Reduced fitness associated with spinosad resistance in Helicoverpa armigera. Phytoparasitica, 38:103–110.
  • Watson, T. F., 1964. Influence of host plant condition on population increase of Tetranychus telarius (Linnaeus) (Acarina: Tetranychidae). Hilgardia, 35: 273-322.
  • Wrensch, D. L., 1985. “Reproductive Parameters, 165-170”. In: Spider Mites: Their Biology, Natural Enemies and Control (Eds. W. Helle & M. V. Sabelis). Elsevier, Amsterdam, Netherlands, 406 pp.