Soğan bitkisinde mikoriza (Rhizophagus irregularis Walker & Schüßler, 2010) ve soğan sak nematodunun (Ditylenchus dipsaci Kühn, 1857) (Nematoda: Anguinidae) etkileşimi

Soğan sak nematodu ana konukçusu olan soğan bitkisinde önemli ekonomik kayıplara neden olan bir bitki paraziti nematod türüdür. Mikoriza bitki gelişimini ve sistemik dayanıklılığını arttırarak bitkileri çoğu hastalık ve zararlı etmenlerine karşı dayanıklı hale getirmektedir. Ancak soğan sak nematodu ile ilişkisine yönelik ayrıntılı bir çalışmaya rastlanmamıştır. Soğan bitkisinde mikorizanın soğan sak nematodu üzerine etkisi araştırılmıştır. Mikoriza soğanda nematod penetrasyonu ve üremesini önemli oranda etkilememiştir. Ortalama penetrasyon oranları mikorizalı ve mikorizasız bitkilerde sırasıyla %13.5 ve %7.5 olarak belirlenmiştir. Üreme oranı büyütme dolabında 0.6-1.3 kat, serada 0.7-3.6 kat olarak elde edilmiştir. Bitki ağırlığı uygulamalarda 0.9-2.2 g arasında kayıt edilmiştir. Mikorizanın soğan bitkisinin gelişimini arttırarak soğan sak nematoduna toleransını arttırması nedeniyle, soğan sak nematodunun bulaşık olduğu soğan yetiştirme alanlarında yaygınlaştırılması faydalıdır.

The interaction of the mycorrhizae of the fungus Rhizophagus irregularis (Walker & Schüßler, 2010) (Glomerales: Glomeraceae) and the stem and bulb nematode (Ditylenchus dipsaci Kühn, 1857) (Tylenchida: Anguinidae) on the onion plant (Allium cepa L.) (Asparagales: Amaryllidaceae)

The stem and bulb nematode, Ditylenchus dipsaci, is a plant parasite that causes significant economic losses to growers of the main host plant, onion. Fungal mycorrhizae can increase plant growth and induce systemic resistance against many diseases and pests. However, no evidence of a detailed study was found regarding the relationship of mycorrhizae with D. dipsaci. In this study, the effects of the mycorrhizae of the fungus, Rhizophagus irregularis, on D. dipsaci, the stem and bulb nematode, on the onion plant, Allium cepa, were investigated. The mycorrhizae did not significantly reduce nematode penetration and multiplication on onion plant roots. Mean penetration rates for mycorrhizal and non-mycorrhizal plants were 13.5% and 7.5%, respectively. The multiplication rate was between 0.6 and 1.3 in a growth chamber and 0.7 and 3.6 in a greenhouse. Fresh plant weight was 0.9-2.2 g in the greenhouse. Since the mycorrhizae of R. irregularis increased the growth of the onion plant by increasing its tolerance to D. dipsaci, it would be beneficial to increase mycorrhizal levels in onion growing areas where D. dipsaci, the stem and bulb nematode, is present.

___

  • Ames R. N., 1989. Mycorrhiza development in onion in response to inoculation with chitin decomposing actinomycetes. New Phytopathology. 112: 423-427.
  • Bolandnazar S., 2009. The effect of mycorrhizal fungi on onion (Allium cepa L.) growth and yield under three irrigation intervals at field condition. Journal of Food Agriculture and Environment, 7 (2): 360-362.
  • Caron M., 1989. Potential use of mycorrhizae in control of soilborne diseases. Canadian Journal of Plant Pathology, 11: 177-179.
  • Castillo P., A. I. Nico, C. Azon-Aguilar, C. D. Rincon, C. Calvet & R. M. Jimnez-Diaz, 2006. Protection of olive planting stocks against parasitism of root knot nematodes by arbuscular mycorrhizal fungi. Plant Pathology, 55: 705-713.
  • Duncan L. W. & M. Moens, 2006. Migratory Endoparasitic Nematodes (Ed.: Perry, N. R. & M. Moens, Plant Nematology), CAB Intenational, London, pp. 123-142.
  • Elsen A., D. Gervacio, R. Swennen & D. De Waele, 2008. AMF-Introduced biocontrol against plant parasitic nematodes in Musa sp.: a systematic effect. Mycorrhiza, 18: 251-256.
  • Fitter A.H., T. Helgason & A. Hodge, 2011. Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Trends Cell Biology, 25: 68–72.
  • Gera Hol W. H. & R. Cook, 2005. An overview of Arbuscular Mychorrhizae Fungi-Nematode Interactions. Basic and Applied Ecology, 6: 489-503.
  • Giovannetti M. & B. Mosse, 1980. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytologist, 84: 489-500.
  • Hooper D. J., J. Hallmann & S. Subbotin, 2005. Methods for Extraction, Processing and Detection of Plant and Soil Nematodes, (Ed.: Luc, M., R. A. Sikora & J. Bridge, Plant Parasitic Nematodes in Subtropical and Tropical Agriculture), CABI Publishing, London, pp. 53-87.
  • Hothem, S. D., A. M. Karen, & A. L. Richard, 2003. Photochemistry in Hoagland's Nutrient Solution. Journal of Plant Nutrition, 26: 4, 845-854.
  • Jaizme-Vega M. C., P. Teneury, J. Pinochet & M. Jaumot, 1997. Interactions between the root knot nematode Meloidogne incognita and Glomus mosseae in banana. Plant and Soil, 196: 27-35.
  • Jaizme-Vega M. C. & A. S. Rodriguez-Romero, 2004. Uso de micorrizas en banano: Logros y perspectivas. XVI Reunion International ACORBAT. Oaxaca, Mexico, Publication Especial, pp. 143-160.
  • JMP, 2020. Statistics (URL: https://www.jmp.com) (Date Accessed: 01.07.2020).
  • Koske R. E. & J. N. Gemma, 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92: 486-505.
  • Mennan S. & O. Ecevit, 2002. Farklı preparatların Ditylenchus dipsaci soğan ırkına karşı etkinliği üzerinde araştırmalar. Ondokuz Mayıs University Agriculture Faculty Journal, 17 (16): 20-24.
  • Morandi D., 1996. Occurence of phytoalexins and phenolic compounds in endomycorrhizal interactions and their potential role in biological control. Plant and Soil, 185 (2): 241-251.
  • Ortaş İ., 1997. Determination of the extent of rhizosphere soil. Communication Soil Science and Plant Analysis, 28 (19-20): 1767-1776.
  • Özdemir A., Ç. Akpınar, A. Sabir, H. Bilir, S. Tangolar & İ. Ortaş, 2010. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp. ). European Journal of Horticultural Science, 75 (3): 103-110.
  • Rozpadek R., M. Rapala-Kozik, K. Wezowicz, A. Grandind, S. Karlssond, R. Wazny, T. Anielska, & K. Turnau, 2016. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiology and Biochemistry, 107: 264-272.
  • Schouteden N., D. D. Waele, B. Panis & C. M. Vos, 2015. Arbuscular mycorrhizal fungi for the biocontrol of plant parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology, 6: 1-12.
  • Sturhan D. & M. W. Brzeski, 1991. Stem and Bulb Nematodes, Ditylenchus spp., (Ed.: Nickle, W. R., Manual of Agricultural Nematology), Marcel Dekker Publications, New York, pp. 423-464.
  • Yavuzaslanoglu E., A. Dikici & I. H. Elekcioglu, 2015. Effect of Ditylenchus dipsaci Kühn, 1857 (Tylenchida: Anguinidae) on onion yield in Karaman Province, Turkey. Turkish Journal of Agriculture and Forestry, 39: 227-233.
  • Yavuzaslanoglu E., O. Ates Sonmezoglu, N. Genc, Z. M. Akar & B. Terzi, 2018. Molecular characterization of Ditylenchus dipsaci on onion in Turkey. European Journal of Plant Pathology, 151 (1): 195-200.
  • Yavuzaslanoglu E., 2019. Resistance and Tolerance of Commercial Onion Cultivars to Stem and Bulb Nematode, Ditylenchus dipsaci. Journal of Agricultural Sciences, 25: 409-416.
  • Yavuzaslanoglu E, & G. Aksay, 2021. Susceptibility of different plant species to two populations of Ditylenchus dipsaci Kühn, 1857 (Tylenchida: Anguinidae) from Turkey. Turkish Journal of Entomology, 45(1): 77-86.