Bazı entomopatojen fungus izolatlarının Domates güvesi Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvalarına karşı etkinliğinin araştırılması

Bu çalışmada, Tuta absoluta'ya karşı entomopatojenik fungusların patojenitesi test edilmiştir. Deneme 2020/2021 yılında Bursa Uludağ Üniversitesi Bahçe Bitkileri Bölümü seralarında yürütülmüştür. Araziden toplanan T. absoluta erginleri, iklim kabinleri içerisindeki domates fideleri üzerinde üretilmiştir. Daha sonra, tesadüf blokları deneme deseninde faktöryel düzende her izolat için beş farklı konsantarasyonda her tekerrürde on birey olmak üzere üç tekerrürlü denemeler kurulmuştur. İzolatların öldürücü etkisi için yapılan varyans analizlerinde, izolatlar ve konsantrasyonlar arasında önemli farklılıklar (p<0.05) tespit edilmiştir. En düşük ölüm oranı (% 80.77), en yüksek LC50 (, 2.3x108) ve LT (LT50 ,4.9 ve LT90 ,9.9 gün) değerleri ile Metarhizium anisopliae Ak-12 izolatı en etkisiz olarak bulunmuştur. Yüksek ölüm oranı (%91) ve düşük LT50 ve LT90, (4 ve 7.6 gün) değerleri ile 1×1010 konsantrasyonunda Beauveria bassiana Ak-10 en etkili izolat olmuştur. Sonuçlar, 1x109 ve 1x1010 konidia/ml konsantrasyonlarının en etkili, 1x106 konidia/ml konsantrasyonunun ise etkisiz olduğunu göstermiştir. Çalışma, izolatlar ve konsantrasyonlar arasındaki potansiyel değişimin T. absoluta larvalarının ölüm oranlarındaki varyasyonuna olan etkisini göstermiştir.

Evaluation of the pathogenicity of some entomopathogenic fungi against Tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae

The current study was initiated to test the pathogenicity of entomopathogenic fungi against Tuta absoluta. The experiment was conducted at Bursa Uludag University, Horticulture Department glasshouse in 2020/2021. Tuta absoluta adults were collected and larvae were reared on tomatoe seedlings in a growth chamber. Then, ten larvae were treated with each isolate at five inoculum suspension concentrations in a factorial experiment arranged in a completely randomized block design with three replications. The analysis of variance for mortality revealed significant variations (p<0.05) among isolates and concentrations. Metarhizium anisopliae Ak-12 caused the lowest mortality of 80.77% but had the highest LC50 (2.3x108) and the longest incubation period LT50 4.9 and LT90, 9.9 days and considered to be less pathogenic. Whereas Beauveria bassiana Ak-10 showed the highest mortality 91% and the lowest LT50, 4 and LT90, 7.6 days at 1×1010 conidia /ml, followed by Beauveria bassiana Ak-14 and is considered the most aggressive. Conidia concentrations of 1x109 and 1x1010 conidia/ml were the most effective while 1x106 conidia/ml was the least effective. Overall, the current work revealed the potential variation among isolates and concentrations on the mortality of T. absoluta larvae.

___

  • Abbott W.S., 1925. A method for computing the effectiveness of an insecticide. Journal Economic Entomology, 18:265-267.
  • Abdel-Raheem M., I.A. Ismail, R.S. Abdel-Rahman, N.A. Farag & I.E. Abdel-Raheem, 2015. Entomopathogenic fungi, Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) as biological control agents on some stored product insects. Journal of Entomology and Zoology Studies, 3(6): 316-320.
  • Aynalem A.B., M.D. Diriba, J. Venegas & F. Assefa, 2020. Morphological, molecular, and pathogenicity characteristics of the native isolates of Metarhizium anisopliae against the tomato leaf miner, Tuta absoluta (Meyrick 1917) (Lepidoptera: Gelechiidae) in Ethiopia. Egyptian Journal Biological Pest Control, 30:59.
  • Biondi A., A. Chailleux, J. Lambion, P. Han, L. Zappala & N. Desneux, 2013. Indigenous Natural Enemies Attacking Tuta absoluta (Lepidoptera: Gelechiidae) in Southern France. Egyptian Journal of Biological Pest Control, 23 (1): 117-121.
  • CABI, 2021. Tuta absoluta Natural enemy. European and Mediterranean Plant Protection Organization ,URL: https://www.cabi.org/isc/20210446032. Accessed on July 25, 2021.
  • Desneux N., E. Wajnberg, K. Wyckhuys, G. Burgio, S. Arpaia, V.C.A. Narvaez, C. Gonzalez, J., Ruescas D.C., Tabone E., Frandon J., Pizzol J., Poncet C., Cabello T. & Urbaneja A. 2010. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83: 197-215.
  • Fergani Y.A. & R.S. Yehia, 2020. Isolation, molecular characterization of indigenous Beauveria bassiana isolate, using ITS-5.8 s rDNA region and its efficacy against the greatest wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae) as a model insect. Egyptian Journal of Biological Pest Control, 30:96. Finey D.J., 1971. Probit Analysis, 3rd ed. Cambridge University Press, London. Publication No: Publication No: 14, 333 pp. Food & Agriculture Organization of the United Nations, 2017. Transboundary Threats To Food And Nutrition Security In Southern Africa. URL: http://www.fao.org/faostat/en. (Accessed on April 24, 2022).
  • Erler F. & O. Ates 2015. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae as biological control agents against the June beetle (Coleoptera: Scarabaeidae) . Journal of Insect Science, 15 (1): 44-51.
  • Guedes R.N.C. & M.C. Picanço, 2012. The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bulletin, 42(2):211-216.
  • Gashawbeza A. & F. Abiy, 2012. Occurrence of a new leaf-mining and fruit boring moth of tomato, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Ethiopia. Pest Management Journal of Ethiopia, 16: 57 – 61.
  • Jaronski S.T. & G.M. Mascarin, 2013. Mass Production of Entomopathogenic Fungi: State of the Art. Mass Production of Beneficial Organisms. Published Elsevier Inc. Invertebrates and Entomopathogens, 357-413. Kaya H. & Y. Tanada, 2012. Insect pathology. Academic Press, San Diego. URL: https://doi.org/10.1016/B978-0-08-092625-4.50001-7.
  • Kılıç T., 2010. First record of Tuta absoluta in Turkey. Phytoparasitica, 38(3): 243-244.
  • Kushiyev R., C. Tuncer, I. Erper, O.I. Ozdemir & I. Saruhan, 2018. Efficacy of native entomopathogenic fungus, Isaria fumosorosea against bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control, 28:55.
  • Nicola S., G. Tibaldi & E. Fontana, 2009. Tomato Production Systems and Their Application to the Tropics. Vegetable Crops and Medicinal and Aromatic Plants Torino Grugliasco University , Italy. Acta Horticulturae, 821, 1 (29): 27-34.
  • Ozdemir I.O., C. Tuncer & I. Erper, 2020. Efficacy of the entomopathogenic fungi; Beauveria bassiana and Metarhizium anisopliae against the cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Chrysomelidae: Bruchinae). Egyptian Journal of Biological Pest Control, 30 (24).
  • Ndereyimana A., S. Nyalala, P. Murerwa & S.V. Gaidashova 2019. Pathogenicity of some commercial formulations of entomopathogenic fungi on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control, 29:70.
  • Ratna B.A.S & B. Binu 2019. The life cycle of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) on different solanaceous host plants under laboratory conditions in Nepal. Journal of Entomology and Zoology Study , 7(3):1011-1013.
  • Rodriguez M., M. Gerding & A. France, 2006. Effectivity of entomopathogenic fungus strains on tomato moth Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) larvae. Agricultura Tecnica (Chile), 66(2):159-165.
  • Ruiu L., 2015. Insect pathogenic bacteria in integrated pest management. Insects, 6 (2): 352-367.
  • Rwomushana I., T. Beale, J. Tambo, F. Makale, C. Pratt, G. Lamontagne & M.P. Gonzalez, 2019. Tomato Leaf miner (Tuta absoluta) : impacts and Coping strategy for Africa. CABI working paper, Uk, Wallingford Record No: 20193363037, pp58 .
  • Sabbour M.M. & N. Soliman, 2012. Evaluations of three Bacillus thuringiensis against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. International Journal of Science and Research, 3(8): 2319-7064.
  • Sabbour M.M., 2014. Biocontrol of the Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. Middle East Journal of Agriculture Research, 3(3): 499-503.
  • SAS, 2021. Statistical analysis system software. Ver. 9.4. SAS Institute Inc., Carry. NC. 1989-2021.
  • Shiberu T. & E. Getu, 2017. Entomopathogenic effect of Beauveria bassiana (Bals.) and Metarrhizium anisopliae (Metschn.) on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae under laboratory and glasshouse conditions in Ethiopia. Journal of Plant Pathology and Microbiology, 8:411–414.
  • Singh A. & K. Zahra, 2017. LC50 assessment of cypermethrin in Heteropneustes fossilis: Probit analysis . International Journal Fisheries and Acquatic studies, 5(5): 126-130.
  • Siqueira H.A., R.N.V. Guedes & M.C. Picanço, 2001. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agricultural and Forest Entomology, 2 (1): 147-153.
  • Sora S.A., 2018. Review on the productivity of Released Tomato (Solanum Lycopersicum Mill) varieties in Different Parts of Ethiopia. Journal of Horticulture Science and Forestry, 1(1):102.
  • Tsoulnara D. & R G. Port, 2016. Efficacy of a Beauveria bassiana strain, Bacillus thuringiensis and their combination against the tomato leafminer Tuta absoluta. Entomologia Hellenica, 25(2): 23-30.
  • Veres A., K.A. Wyckhuys, J. Kiss, F. Toth, G. Burgio, X. Pons & L. Furlan, 2020. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environmental Science and Pollution Research, 27(24): 29867-29899.
  • Wekesa V.W., M. Knapp, N.K. Maniania & H.I. Boga, 2006. Effects of Beauveria bassiana and Metarhizium anisopliae on mortality, fecundity and egg fertility of Tetranychus evansi. Journal Applied Entomology, 130(3):155–159.
  • Youssef A.N., 2015. Efficacy of the entomopathogenic nematodes and fungi for controlling the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera : Gelechiidae). Arab Universities Journal of Agricultural Science, 23(2): 591–598.