Validation of reference genes for quantitative expression analysis by qPCR in various tissues of date mussel (Lithophaga lithophaga)

Validation of reference genes for quantitative expression analysis by qPCR in various tissues of date mussel (Lithophaga lithophaga)

qPCR is a very popular method for identifying nucleotide sequences as a result of its sensitivity and relatively low cost andtechnical simplicity. Normalization is one of the most important steps in analyzing qPCR data and the use of reference genes is themost common normalization strategy. In the present study five commonly used reference genes (18S, 28S, ef1a, β-act, and α-tub) wereevaluated for their stability in the mantle, gill, foot, and pallial gland of date mussel (L. lithophaga) in different seasons. Four differentsoftware packages were used for evaluation: geNorm, NormFinder, BestKeeper, and RefFinder. Although these programs containdifferent algorithms and analytical procedures, their ranking of the candidate reference genes was similar. Of the five selected referencegenes 18S, 28S, and ef1a were determined as the three most stable in different tissues and seasons. A-tub was evaluated as the least stablereference gene and therefore inappropriate for normalization of quantitative gene expression data. The results will help improve theaccuracy of gene expression analysis in samples of date mussel and at the same time provide guidance for selection of reference genesin future qPCR studies in the species.

___

  • Aksit D, Falakali Mutaf B (2014). The gill morphology of the date mussel Lithophaga lithophaga (Bivalvia: Mytilidae). Turkish Journal of Zoology 38 (1): 61-67. doi: 10.3906/zoo-1211-8
  • Andersen CL, Jensen JL, Orntoft TF (2004). Normalization of realtime quantitative reverse transcription-PCR data: a modelbased variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64 (15): 5245-5250. doi: 10.1158/0008-5472. CAN-04-0496
  • Araya MT, Siah A, Mateo D, Markham F, McKenna P et al. (2008). Selection and evaluation of housekeeping genes for haemocytes of soft-shell clams (Mya arenaria) challenged with Vibrio splendidus. Journal of Invertebrate Pathology 99 (3): 326-331. doi: 10.1016/j.jip.2008.08.002
  • Bolognani L, Bolognani-Fantin AM, Vigo E, Cucchi ML (1976). Histochemical and biochemical research on the pallial gland of Lithophaga (Lithodomus) lithophaga L. Acta Histochemica 55 (1): 42-59. doi: 10.1016/s0065-1281(76)80095-5
  • Bolognani Fantin AM, Bolognani L (1979). The pallial gland of Lithophaga lithophaga (L.): A histochemical and biochemical approach of the rock boring problem. Malacologia 18: 587-589.
  • Cubero-Leon E, Ciocan CM, Minier C, Rotchell JM (2012). Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure. Environmental Science and Pollution Research 19 (7): 2728- 2733. doi: 10.1007/s11356-012-0772-9
  • Devescovi M (2009). Biometric differences between date mussels Lithophaga lithophaga colonizing artificial and natural structures. Acta Adriatica 50 (2): 129-138.
  • Devescovi M, Ivesa L (2008). Colonization patterns of the date mussel Lithophaga lithophaga (L., 1758) on limestone breakwater boulders of a marina. Periodicum Biologorum 110 (4): 339-345.
  • Dheilly NM, Lelong C, Huvet A, Favrel P (2011). Development of a Pacific oyster (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and tissue-enriched expression patterns. BMC Genomics 12: 468. doi: 10.1186/1471-2164-12-468
  • Du Y, Zhang L, Xu F, Huang B, Zhang G et al. (2013). Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish and Shellfish Immunology 34 (3): 939-945. doi: 10.1016/j.fsi.2012.12.007
  • Feng LY, Yu Q, Li X, Ning XH, Wang J et al. (2013). Identification of reference genes for qRT-PCR analysis in Yesso scallop Patinopecten yessoensis. PLoS One 8 (9): e75609. doi: 10.1371/ journal.pone.0075609
  • Giribet G, Wheeler W (2002). On bivalve phylogeny: a highlevel analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121 (4): 271-324. doi: 10.1111/j.1744-7410.2002.tb00132.x
  • Gonzalez JT, Halcon RMA, Barrajon A, Calvo M, Frias A et al. (2000). Estudio sobre la biologia, conservación y problemática del dátil de mar (Lithophaga lithophaga) en Espana. Madrid, Spain: Ministerio de Medio Ambiente, Dirección General de Conservación de la Naturaleza (in Spanish).
  • Grubelić I, Šimunović A, Despalatović M (2004). The date-shell Lithophaga lithophaga L. colonization of immersed rocks at the eastern part of the Adriatic Sea. Rapport Commission Internationa pour l’exploration scientifique de la Mer Méditerranée 37: 520.
  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007). qBase relative quantification framework and software for management and automated analysis of realtime quantitative PCR data. Genome Biology 8 (2): R19. doi: 10.1186/gb-2007-8-2-r19
  • Hellemans J, Vandesompele J (2014). Selection of reliable reference genes for RT-qPCR analysis. In: Biassoni R, Raso A (editors). Quantitative Real-Time PCR: Methods and Protocols. New York, NY, USA: Humana Press, pp. 19-26.
  • Higuchi R, Fockler C, Dollinger G, Watson R (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11 (9): 1026-1030. doi: 10.1038/nbt0993- 1026
  • Huggett J, Dheda K, Bustin S, Zumla A (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes and Immunity 6 (4): 279-284. doi: 10.1038/sj.gene.6364190
  • Jaccarini V, Bannister WH, Micallef H (1968). The pallial glands and rock boring in Lithophaga lithophaga (Lamellibranchia, Mytilidae) Journal of Zoology 154: 397-401. doi: 10.1111/ j.1469-7998.1968.tb01672.x
  • Kefi FJ, Boubaker S, Menif NTE (2014). Relative growth and reproductive cycle of the date mussel Lithophaga lithophaga (Linnaeus, 1758) sampled from the Bizerte Bay (Northern Tunisia). Helgoland Marine Research 68 (3): 439-450. doi: 10.1007/s10152-014-0400-9
  • Kleemann K (1973). Lithophaga lithophaga (L.) (Bivalvia) in different limestone. Malacologia 14: 345-347.
  • Kleemann K (1996). Biocorrosion by bivalves. Marine Ecology 17 (1- 3): 145-158. doi: 10.1111/j.1439-0485.1996.tb00496.x
  • Lacroix C, Coquille V, Guyomarch J, Auffret M, Moraga D (2014). A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species. Marine Pollution Bulletin 86 (1-2): 304-313. doi: 10.1016/j.marpolbul.2014.06.049
  • Llera-Herrera R, Garcia-Gasca A, Huvet A, Ibarra AM (2012). Identification of a tubulin-alpha gene specifically expressed in testis and adductor muscle during stable reference gene selection in the hermaphrodite gonad of the lion’s paw scallop Nodipecten subnodosus. Marine Genomics 6: 33-44. doi: 10.1016/j.margen.2012.03.003
  • López-Landavery EA, Portillo-López A, Gallardo-Escárate C, Del Río-Portilla MA (2014). Selection of reference genes as internal controls for gene expression in tissues of red abalone Haliotis rufescens (Mollusca, Vetigastropoda; Swainson, 1822). Gene 549 (2): 258-265. doi: 10.1016/j.gene.2014.08.002
  • Martinez-Lage A, Rodriguez-Farina F, Gonzalez-Tizon A, Mendez J (2005). Origin and evolution of Mytilus mussel satellite DNAs. Genome 48 (2): 247-256. doi: 10.1139/g04-115
  • Mauriz O, Maneiro V, Pérez-Parallé ML, Sánchez JL, Pazos AJ (2012). Selection of reference genes for quantitative RTPCR studies on the gonad of the bivalve mollusc Pecten maximus L. Aquaculture 370-371: 158-165. doi: 10.1016/j. aquaculture.2012.10.020
  • Miao J, Pan L, Zhang W, Liu D, Cai Y et al. (2014). Identification of differentially expressed genes in the digestive gland of manila clam Ruditapes philippinarum exposed to BDE-47. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 161: 15-20. doi: 10.1016/j.cbpc.2013.12.004
  • Moreira R, Pereiro P, Costa MM, Figueras A, Novoa B (2014). Evaluation of reference genes of Mytilus galloprovincialis and Ruditapes philippinarum infected with three bacteria strains for gene expression analysis. Aquatic Living Resources 27 (3-4): 147-152. doi: 10.1051/alr/2014015
  • Morton B, Scott PJB (1980). Morphological and functional specializations of the shell, musculature and pallial glands in the Lithophaginae (Mollusca: Bivalvia). Journal of Zoology 192: 179-203. doi: 10.1111/j.1469-7998.1980.tb04229.x
  • Nishihara H, Plazzi F, Passamonti M, Okada N (2016). MetaSINEs: Broad distribution of a novel SINE superfamily in animals. Genome Biology and Evolution 8 (3): 528-539. doi: 10.1093/ gbe/evw029
  • Owada M (2007). Functional morphology and phylogeny of the rock-boring bivalves Leiosolenus and Lithophaga (Bivalvia: Mytilidae): a third functional clade. Marine Biology 150 (5): 853-860. doi: 10.1007/s00227-006-0409-y
  • Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29 (9): e45. doi: 10.1093/nar/29.9.e45
  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excelbased tool using pair-wise correlations. Biotechnology Letters 26 (6): 509-515. doi: 10.1023/b:bile.0000019559.84305.47
  • Pu F, Yang BY, Ke C (2015). Characterization of reference genes for qPCR analysis in various tissues of the Fujian oyster Crassostrea angulata. Chinese Journal of Oceanology and Limnology 33 (4): 838-845. doi: 10.1007/s00343-015-4078-x
  • Siah A, Dohoo C, McKenna P, Delaporte M, Berthe FC (2008). Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria. Fish & Shellfish Immunology 25 (3): 202-207. doi: 10.1016/j.fsi.2008.04.006
  • Šimunović A, Grubelić I, Tudor M, Hrs-Brenko M (1990). Sexual cycle and biometry of date shell, Lithophaga lithophaga Linnaeus (Mytilidae). Acta Adriatica 31 (1/2): 139-151.
  • Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC (2008). Stability of reference genes for realtime PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 151 (3): 296-304. doi: 10.1016/j. cbpb.2008.07.010
  • Tanguy A, Boutet I, Laroche J, Moraga D (2005). Molecular identification and expression study of differentially regulated genes in the Pacific oyster Crassostrea gigas in response to pesticide exposure. FEBS Journal 272 (2): 390-403. doi: 10.1111/j.1742-4658.2004.04479.x
  • Sivka U, Toplak N, Koren S, Jakse J (2018). De novo transcriptome of the pallial gland of the date mussel (Lithophaga lithophaga). Comp Biochem Physiol Part D Genomics Proteomics 26 1-9. doi:10.1016/j.cbd.2018.02.001
  • Valli G, Nodari P, Sponza R (1986). Experimental breeding of Lithophaga lithophaga (L.) (Bivalvia, Mytilacea) and study of the reproductive cycle in the Gulf of Trieste. Nova Thalassi 8: 1-13.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N et al. (2002). Accurate normalization of real-time quantitative RTPCR data by geometric averaging of multiple internal control genes. Genome Biology 3 (7): 0034.
  • Vizoso M, Vierna J, Gonzalez-Tizon AM, Martinez-Lage A (2011). The 5S rDNA gene family in mollusks: characterization of transcriptional regulatory regions, prediction of secondary structures, and long-term evolution, with special attention to Mytilidae mussels. Journal of Heredity 102 (4): 433-447. doi: 10.1093/jhered/esr046
  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80: 75-84. doi: 10.1007/s11103-012- 9885-2