Pelvic and sacral size dimorphism and allometry in two predatory carnivores with different life histories and locomotory adaptations

Sexual size dimorphism (SSD) of the wolf and the lynx was evaluated for 15 pelvic and sacral variables in 48 specimens from the Western Carpathians. Our data confirmed small male-biased SSD in the pelvic and sacral bones for both species. We suggest that this can be explained by the need for a compromise between requirements for locomotion and giving birth. We also confirmed that significant differences exist between the species in the size of the pelvic and sacral bones. We discuss our findings in light of the species' different life histories.

___

  • Álvarez A, Ercoli MD, Prevosti FJ (2013). Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. Zoology 116: 356-371.
  • Balčiauskienė L, Balčiauskas L (2009). On pelvis morphometry of the root vole Microtus oeconomus (Pallas, 1776). Veterinarija ir zootechnika 46: 3-9.
  • Balčiauskienė L, Balčiauskas L (2016). Pelvis of the striped field mouse Apodemus agrarius (Pallas, 1771): sexual dimorphism and relation to body weight. North-Western Journal of Zoology 12: 50-57.
  • Berdnikovs S, Bernstein M, Metzler A, German RZ (2007). Pelvic growth: ontogeny of size and shape sexual dimorphism in rat pelves. Journal of Morphology 268: 12-22.
  • Budaev SV (2010). Using principal components and factor analysis in animal behaviour research: caveats and guidelines. Ethology 116: 472-480.
  • Carlon B, Hubbard C (2012). Hip and thigh anatomy of the clouded leopard (Neofelis nebulosa) with comparisons to the domestic cat (Felis catus). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 295: 577-589.
  • Carrier DR, Chase K, Lark KG (2005). Genetics of canid skeletal variation: size and shape of the pelvis. Genome Research 15: 1825-1830.
  • Chase K, Carrier DR, Adler FR, Jarvik T, Ostrander EA et al. (2002). Genetic basis for systems of skeletal quantitative traits: principal component analysis of the canid skeleton. Proceedings of the National Academy of Sciences of the USA 99 (15): 9930-9935.
  • Clair EMS (2007). Sexual dimorphism in the pelvis of Microcebus. International Journal of Primatology 28: 1109-1122.
  • Evans HE, de Lahunta A (2009). Guide to the Dissection of the Dog. 7th ed. St. Louis, MO, USA: Elsevier Health Sciences.
  • Evans H, de Lahunta A (2013). Miller’s Anatomy of the Dog. 4th ed. St. Louis, MO, USA: Elsevier Health Sciences.
  • Hell P, Slamečka J, Gašparík J (2001). Wolf in Slovakian Carpathians and in the World. Bratislava, Slovakia: PaRPRESS.
  • Hell P, Slamečka J, Gašparík J (2004). Lynx and the Wildcat in Slovakian Carpathians and in the World. Bratislava, Slovakia: PaRPRESS.
  • Hromada M, Čanády A, Mikula P, Peterson AT, Tryjanowski P (2015). Old natural history collections for the new millennium – Birds and mammals in the collection of PhMr, Tibor Weisz in Sarisske Museum Bardejov, Slovakia. Folia Oecologica, Acta Universitatis Presoviensis 7: 115-141.
  • Iguchi T, Fukazawa Y, Bern HA (1995). Effects of sex hormones on oncogene expression in the vagina and on development of sexual dimorphism of the pelvis and anococcygeus muscle in the mouse. Environmental Health Perspectives 103: 79-82.
  • Jenkins FA, Camazine SM (1977). Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology 181: 351-370.
  • Johanson JM, Berger PJ (2003). Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle. Journal of Dairy Science 86: 3745-3755.
  • Jurgelėnas E (2015). Osteometric analysis of the pelvic bones and sacrum of the red fox and raccoon dog. Veterinarija ir zootechnika 70: 42-47.
  • Kilmer JT, Rodríguez RL (2017). Ordinary least squares regression is indicated for studies of allometry. Journal of Evolutionary Biology 30: 4-12.
  • Kryštufek B (1998). Intersexual and interpopulation variability in the pelvis (os coxae) of the European souslik, Spermophilus citellus. Folia Zoologica 47: 81-91.
  • Lovich JE, Gibbons JW (1992). A review of techniques for quantifying sexual size dimorphism. Growth Development and Aging 56: 269-269.
  • Malashichev Y, Borkhvardt V, Christ B, Scaal M (2005). Differential regulation of avian pelvic girdle development by the limb field ectoderm. Anatomy and Embryology 210: 187-197.
  • Malashichev Y, Christ B, Pröls F (2008). Avian pelvis originates from lateral plate mesoderm and its development requires signals from both ectoderm and paraxial mesoderm. Cell and Tissue Research 31: 595-604.
  • Martín-Serra A, Figueirido B, Palmqvist P (2014). A three- dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS One 9: e85574.
  • Martín-Serra A, Figueirido B, Pérez-Claros JA, Palmqvist P (2015). Patterns of morphological integration in the appendicular skeleton of mammalian carnivores. Evolution 69: 321-340.
  • Matysiak A, Malecha AW, Jakubowski H, Sadowska ET, Koteja P et al. (2017). Sexual dimorphism, asymmetry, and the effect of reproduction on pelvis bone in the bank vole, Myodes glareolus. Mammal Research 62: 297-306.
  • Mošanský A (1983). The mammalian fauna of East Slovakia and the catalogue of mammaliological collections of East Slovakian Museum, Part III. (Carnivora 2). Acta Musei Slovaciae Regionis Orientalis 24: 105-125 (in Slovak).
  • Nganvongpanit K, Pitakarnnop T, Buddhachat K, Phatsara M (2017). Gender-related differences in pelvic morphometrics of the retriever dog breed. Anatomia, Histologia, Embryologia 46: 51-57.
  • Nwoha PU (2000). Sex differences in the bony pelvis of the fruit- eating bat, Eidolon helvum. Folia Morphologica 59: 291-295.
  • Parés Casanova PM, Martínez S (2014). Geometric morphometrics for the study of hemicoxae sexual dimorphism in a local domestic equine breed. International Journal of Morphology 31: 623-628.
  • Pélabon C, Firmat C, Bolstad GH, Voje KL, Houle D et al. (2014). Evolution of morphological allometry. Annals of the New York Academy of Sciences 1320: 58-75.
  • Pomikal C, Streicher J (2010). 4D-analysis of early pelvic girdle development in the mouse (Mus musculus). Journal of Morphology 271: 116-126.
  • Rodríguez RL, Cramer JD, Schmitt CA, Gaetano TJ, Grobler JP et al. (2015). Adult age confounds estimates of static allometric slopes in a vertebrate. Ethology, Ecology and Evolution 27: 412-421.
  • Sajjarengpong K, Adirekthaworn A, Srisuwattanasagul K, Sukjumlong S, Darawiroj D (2003). Differences seen in the pelvic bone parameters of male and female dogs. Thai Journal of Veterinary Medicine 33: 55-61.
  • Schulte-Hostedde AI, Millar JS, Hickling GJ (2001). Sexual dimorphism in body composition of small mammals. Canadian Journal of Zoology 79: 1016-1020.
  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005). Restitution of mass–size residuals: validating body condition indices. Ecology 86: 155-163.
  • Schutz H, Donovan ER, Hayes JP (2009a). Effects of parity on pelvic size and shape dimorphism in Mus. Journal of Morphology 270: 834-842.
  • Schutz H, Polly PD, Krieger JD, Guralnick RP (2009b). Differential sexual dimorphism: size and shape in the cranium and pelvis of grey foxes (Urocyon). Biological Journal of the Linnean Society 96: 339-353.
  • Sillero-Zubiri C, Hoffmann M, Macdonald DW (2004). Canids: Foxes, Wolves, Jackals and Dogs, Status Survey and Conservation Action Plan. 2nd ed. Gland, Switzerland: IUCN Canid Specialist Group.
  • Tague RG (2003). Pelvic sexual dimorphism in a metatherian, Didelphis virginiana: implications for eutherians. Journal of Mammalogy 84: 1464-1473.
  • Voje KL (2016). Scaling of morphological characters across trait type, sex, and environment: a meta-analysis of static allometries. American Naturalist187: 89-98.
  • Žiak D, Urban P (2001). Red (Ekosozolical) List of Mammals (Mammalia) of Slovakia. Ochrana prírody 20: 154-156 (in Slovak).