Review on antimicrobial peptides from Malaysian amphibian resources: status, research approaches and ways forward

Review on antimicrobial peptides from Malaysian amphibian resources: status, research approaches and ways forward

Antimicrobial resistance (AMR) is a significant threat to human health globally. Diseases caused by AMR are getting morechallenging to cure due to the increasing rate of resistance of microbial pathogens. Drugs formulated with antimicrobial peptide (AMP)can be applied to treat these diseases. AMPs are found naturally within organisms, especially amphibians, and is related to the highadaptability of defence mechanisms against various pathogens and predators in the environment. This review focuses on the current status of research works and the different approaches applied to stimulate and collect amphibian secretions, extract and identify peptides,and conduct antimicrobial assays. The concerns of AMR include human health, animal health, economy, and agriculture. This sectionprovides an overview of the potential uses of AMPs from Malaysian amphibians, other than their antibacterial and antifungal properties.The exploration of AMP on other amphibian species and the recommended steps for protein/AMP profiling via mass spectrometry arealso included.

___

  • Aboudy Y, Mendelson E, Shalit I, Bessalle R, Fridkin M (1994). Activity of two synthetic amphiphilic peptides and magainin–2 against herpes simplex virus types 1 and 2. International Journal of Peptide and Protein Research 43: 573-582.
  • Adalberto LV, De Almeida-Val VMF, Randall DJ (2016). Tropical environment. In: Fish Physiology, Vol. 21. The Physiology of Tropical Fishes. Cambridge, MA, USA: Academic Press, pp. 1-45.
  • Al-Ghaferi N, Kolodziejek J, Nowotny N, Coquet L, Jouenne Tet al. (2010). Antimicrobial peptides from the skin secretions of the South–East Asian frog Hylarana erythraea (Ranidae). Peptides 31(4): 548-554. doi: 10.1016/j.peptides.2009.12.013
  • Anastasi A, Erspamer V, Endean R (1968). Isolation and amino acid sequence of caerulein, the active decapeptide of the skin of Hyla caerulea. Archives of Biochemistry and Biophysics 125: 57-68.
  • Andrews JM (2001). Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy 48 (Suppl._1): 5-16.
  • Bahar AA, Ren D (2013). Antimicrobial peptides. Pharmaceuticals 6: 1543-1575.
  • Barra D, Simaco M (1995). Amphibian skin: a promising resource for antimicrobial peptides. Trends in Biotechnology 13(6): 205- 209. doi:10.1016/s0167–7799(00)88947–7
  • Barriere SL (2014). Clinical, economic and societal impact of antibiotic resistance. Expert Opinion on Pharmacotherapy 16(2): 151-153. doi:10.1517/14656566.2015.983077
  • Bevins CL, Zasloff M (1990). Peptides from frog-skin. Annual Review of Biochemistry 59: 395-414.
  • Boland MP, Separovic F (2006). Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochimica et Biophysica Acta 1758: 1178-83.
  • Brown KL, Hancock RE (2006). Cationic host defence (antimicrobial) peptides. Current Opinion in Immunology 18:24-30.
  • Bullet P, Stöcklin R, Menin L (2004). Anti–microbial peptides: from invertebrates to vertebrates. Immunological Reviews 198: 169- 184.
  • Calderon LA, Soares AM, Stábeli RG (2012). Anuran antimicrobial peptides: an alternative for the development of nanotechnological based therapies for multi–drug–resistant infections. Signpost Open Journal of Biochemistry and Biotechnology 1: 1-11.
  • Chai TT, Tan YN, Ee KY, Xiao J, Wong FC (2019). Seeds, fermented foods, and agricultural by–products as sources of plant–derived anti–bacterial peptides. Critical Reviews in Food Science and Nutrition 59 (Suppl. 1). doi: 10.1080/10408398.2018.1561418
  • Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D et al. (2004). Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323 (2): 268-275.
  • Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu Cet al. (2019). The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer “omics.” International Journal of Molecular Sciences 20 (10): 2576. doi: 10.3390/ijms20102576
  • Clara A, Manjramkar DD, Reddy VK (2004). Preclinical evaluation of magainin–A as a contraceptive antimicrobial agent. Fertility and Sterility 81: 1357-1365.
  • Clarke BT (1997). The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological Reviews 72 (03): 365-379.
  • Conlon JM, Sonnevend A, Davidson C, Smith DD, Nielsen PF (2004). The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochemical and Biophysical Research Communications 320:170-175.
  • Conlon JM, Kolodziejek J, Nowotny N, Leprince J, Vaudry H et al. (2008). Characterisation of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura: Ranidae). Toxicon 52 (3): 465-473. doi: 10.1016/j.toxicon.2008.06.017
  • Conlon JM (2011). Structural diversity and species distribution of host–defense peptides in frog skin secretions. Cellular and Molecular Life Sciences 68 (13): 2303-2315.
  • Conlon JM, Sonnevend A (2011). Clinical applications of amphibian antimicrobial peptides. Journal of Medical Sciences 4 (2): 62- 72.
  • Conlon JM, Kolodziejek J, Mechkarska M, Coquet L, Leprince J et al. (2014). Host defense peptides from Lithobates forreri, Hylarana luctuosa, and Hylarana signata (Ranidae): Phylogenetic relationships inferred from primary structures of ranatuerin–2 and brevinin–2 peptides. Comparative Biochemistry and Physiology D9: 49-57
  • Conlon JM, Mechkarska M, Leprince J (2019). Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Review of Proteomics16(11-12): 897- 908. doi: 10.1080/14789450.2019.1693894.
  • Csordas A, Michl H (1970). Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species. Monatshefte für Chemie 101: 182-189.
  • Dahham SS, Hew CS, Jaafar I, Gam LH (2016). The protein profiling of Asian Giant toad skin Secretions and their anti–microbial activity. International Journal of Pharmacy and Pharmaceutical Sciences 8 (6): 88-95.
  • De Souza Cardoso JLM., dos Santos Soares MJ, Leite JRSA, Malaquias LCC, Coelho LFL (2013). Antiviral activity of dermaseptin 01 against Dengue virus type 2, Herpes simplex virus type 1 and Vaccinia virus. Scientia Medica 23 (1): 18-21
  • Demori I, El Rashed Z, Corradino V, Catalano A, Rovegno L et al. (2019). Peptides for skin protection and healing in Amphibians. Molecules 24 (2): 347. doi: 10.3390/molecules24020347.
  • Duellman WE, Trueb L (1994). Biology of amphibians. 3rd ed. Baltimore, MD, USA: John Hopkins University Press.
  • Erspamer V (1994). Bioactive secretions of the amphibian integument. In: Heatwole H, Barthalmus GT (editors). Amphibian Biology. Volume 1: The Integument. Chipping Norton, NSW, Australia: Surrey Beatty and Sons, pp. 178-350.
  • Fleming A. Penicillin (December 11, 1945). Nobel Lectures in Chemistry 1942-1962. Singapore: World Scientific Publishing. doi: 10.1142/3732
  • Galdiero S, Falanga A, Cantisani M, Vitiello M, Morelli G et al. (2013). Peptide–lipid interactions: experiments and applications. International Journal of Molecular Science 14: 18758-18789.
  • Gao Y, Wu D, Wang L, Lin C, Ma C et al. (2017). Targeted modification of a novel amphibian antimicrobial peptide from Phyllomedusa tarsius to enhance its activity against MRSA and microbial biofilm. Frontiers in Microbiology 8: 628.
  • Giovannini MG, Poulter L, Gibson BW, Williams DH (1987). Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochemical Journal 243: 13-20.
  • Han YP, Yu HN, Yang XB, Rees HH, Liu JZ et al. (2008). A serine proteinase inhibitor from frog eggs with bacteriostatic activity. Comparative Biochemistry and Physiology - Part B 149: 58-62.
  • Hancock RE, Diamond G (2000). The role of cationic antimicrobial peptides in innate host defenses. Trends in Microbiology 8: 402-410.
  • Hancock RE, Sahl HG (2006). Antimicrobial and host–defense peptides as new anti–infective therapeutic strategies. Nature Biotechnology 24: 1551-1557.
  • Holthausen DJ, George S, Jacob J (2016). Amphibian innate immune mediators protect against human Influenza strains. The Journal of Immunology196 (1 Supplement).
  • Holthausen DJ, Lee SH, Kumar VT, Bouvier NM, Krammer F et al. (2017). An amphibian host defense peptide is virucidal for human H1 hemagglutinin–bearing influenza viruses. Immunity 46(4): 587-595.
  • Inger RF, Stuebing RB, Grafe TU, Dehling JM (2017). A Field Guide to the Frogs of Borneo. Borneo, Malaysia: Natural History Publications, p. 228.
  • Jenkins CN, Pimm SL, Joppa LN (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences 110 (28): E2602-E2610.
  • Khairnar S, Kini R, Harwalkar M, Chaudhari SR (2013). A review on freeze drying process of pharmaceuticals. International Journal of Research in Pharmacy and Science 4 (1): 76-94.
  • Kislinger T, Emili A (2005). Multidimensional protein identification technology: current status and future prospects. Expert Review of Proteomics 2 (1): 27-39. doi: 10.1586/14789450.2.1.27
  • König E, Bininda-Emonds OR, Shaw C (2015). The diversity and evolution of anuran skin peptides. Peptides 63: 96-117. doi: 10.1016/j.peptides.2014.11.003
  • Kumar VT, Holthausen D, Jacob J, George S (2015). Host defense peptides from Asian frogs as potential clinical therapies. Antibiotics 4 (2): 136-159. doi: 10.3390/antibiotics4020136
  • Lai R, Liu H, Lee WH, Zhang Y (2002). An anionic antimicrobial peptide from toad Bombina maxima. Biochemical and Biophysical Research Communications 295: 796-799.
  • Lai R, Zheng YT, Shen JH, Liu GJ, Liu H et al. (2002). Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23: 427-435.
  • Lai R (2010). Combined peptidomics and genomics approach to the isolation of amphibian antimicrobial peptides. Methods in Molecular Biology Peptidomics 177-190. doi: 10.1007/978–1– 60761–535–4_14
  • Lei J, Sun L, Huang S, Zhu C, Li P et al. (2019) The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research 11 (7): 3919-3931.
  • Lu Y, Ma YF, Wang X, Liang JG, Zhang CX et al. (2008). The first antimicrobial peptide from sea amphibian. Molecular Immunology 45: 678-681.
  • Ma Y, Liu C, Liu X, Wu J, Yang H et al. (2010) Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics 95: 66-71.
  • Malik B, Bhattacharyya S (2019). Antibiotic drug–resistance as a complex system driven by socio–economic growth and antibiotic misuse. Scientific Reports 9 (1). doi: 10.1038/ s41598–019–46078–y
  • Mangoni ML (2006). Temporins, anti–infective peptides with expanding properties. Cellular and Molecular Life Science 63 (9): 1060-1069. doi:10.1007/s00018–005–5536–y.
  • Monteiro JM, Oliveira MD, Dias RS, Nacif-Marçal L, Feio RN et al. (2018). The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 514: 79-87.
  • Moore KS, Bevins CL, Brasseur MM, Tomassini N, Turner K et al. (1991). Antimicrobial peptides in the stomach of Xenopus laevis. Journal of Biological Chemistry 266 (29): 19851-19857.
  • Mwangi J, Hao X, Lai R, Zhang ZY (2019). Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research 40 (6): 488-505.
  • National Antibiotic Resistance Surveillance Report (2017). Antibiotic Resistance Surveillance Reference Laboratory, Bacteriology Unit, Infectious Diseases Research Centre. Kuala Lumpur, Malaysia: Institute for Medical Research.
  • Nicolas P, Mor A (1995). Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annual Review of Microbiology 49: 277-304.
  • Niyonsaba F, Nagaoka I, Ogawa H (2006). Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties. Critical Reviews in Immunology 26: 545-576.
  • Norhayati A (2017). Frogs and Toads of Malaysia: Malaysia Biodiversity Information System (MyBIS). Bangi, Malaysia: Penerbit UKM.
  • O’Shea M, Halliday T (2002). Reptiles and Amphibians. Londra, UK: Dorling Kindersley Limited.
  • Pasupuleti M, Schmidtchen A, Malmsten M (2011). Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology 32 (2): 143-171. doi: 10.3109/07388551.2011.594423.
  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344 (6187): 1246752.
  • Pirtskhalava M, Gabrielian A, Cruz P, Griggs HL, Squires RB et al. (2016). DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Research 44 (D1): D1104-D1112.
  • Powers JP, Hancock RE (2003). The relationship between peptide structure and anti–bacterial activity. Peptides 24: 1681-1691.
  • Raheem N, Straus SK (2019). Mechanisms of action for antimicrobial peptides with anti-bacterial and antibiofilm functions. Frontiers in Microbiology 10: 2866.
  • Rahman ZA, Abdullah MF, Azmi WM, Abdul–Aziz A (2016). Preliminary study of antimicrobial activity of the skin secretions of Malaysian frogs. Jurnal Teknologi (Sciences and Engineering) 78 (6-5): 65-69.
  • Rathore D, Faustino A, Schiel J, Pang E, Boyne M et al. (2018). The role of mass spectrometry in the characterisation of biologic protein products. Expert Review of Proteomics 15(5): 431- 449. doi: 10.1080/14789450.2018.1469982.
  • Rinaldi AC, Mangoni ML, Rufo A, Luzi C, Barra D et al. (2002). Temporin L: antimicrobial, cytotoxic activities and effects on membrane permeabilisation in lipid vesicles. Biochemical Journal 368: 91-100.
  • Rollins-Smith LA (2001). Neuroendocrine–immune system interactions in amphibians. Immunologic Research 23 (2-3): 273-280.
  • Roy M, Lebeau L, Chessa C, Damour A, Ladram A et al. (2019). Comparison of anti–viral activity of frog skin anti–microbial peptides temporin–Sha and [K³]SHa to LL–37 and temporin– Tb against herpes simplex virus type 1. Viruses 11 (1): 77. doi: 10.3390/v11010077.
  • Sabri M, Jenggut EJ, Zainudin R, Amit Z (2018). Antimicrobial activity of partially purified peptides isolated from the skin secretions of Bornean frogs in the family of Ranidae. Malaysian Applied Biology 47(6): 145-152.
  • Sang Y, Blecha F (2018). Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Animal Health Research Reviews 9 (2): 227-235.
  • Schadich E (2009). Skin peptide activities against opportunistic bacterial pathogens of the African Clawed Frogs (Xenopus laevis) and three Litoria frogs. Journal of Herpetology 43 (2): 173-183.
  • Shahabuddin MM, Sabri M, Zainudin R, Rasit AH (2018). Characterisation of crude and partially purified peptides with antimicrobial activity from the skin of Bornean frogs. Journal of Sustainability Science and Management 13 (1): 147-157.
  • Shahrudin S, Ismail MN, Kwan SH, Najimudin N (2017). Ecology and proteincomposition of Polypedates leucomystax (Gravenhorst, 1829) (Anura: Rhacophoridae) foam nests from Peninsular Malaysia. Annual Research & Review in Biology 14 (6): 1-10. doi: 10.9734/arrb/2017/34211.
  • Shukla S (2011). Freeze drying process: a review. International Journal of Pharmaceutical Sciences and Research 2 (12): 3061- 3068. doi: 10.13040/IJPSR.0975–8232.2(12).3061–68.
  • Simmaco M, Mignogna G, Barra D (1998). Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47: 435-450.
  • Song Y, Lu Y, Wang L, Yang H, Zhang K et al. (2009). Purification, characterisation and cloning of two novel tigerinin–like peptides from skin secretions of Fejervarya cancrivora. Peptides 30 (7): 1228-1232. doi: 10.1016/j.peptides.2009.03.020
  • Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG (1981). Sequence and specificity of two anti-bacterial proteins involved in insect immunity. Nature 292 (5820): 246-248. doi: 10.1038/292246a0
  • Suhyana J, Artika M, Safari D (2015). Activity of skin secretions of frog Fejervarya limnocharis and Limnonectes macrodon against Streptococcus pneumoniae multidrug resistant and molecular analysis of species F. limnocharis. Current Biochemistry 2 (2): 90-103.
  • Tyers M, Mann M (2003). From genomics to proteomics. Nature 422: 193-197.
  • Van Compernolle SE, Taylor RJ, Oswald–Richter K, Jiang J, Youree BE et al. (2005) Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. Journal of Virology 79 (18): 11598-11606.
  • Van Compernolle S, Smith PB, BowieJH, Tyler MJ, Unutmaz D et al. (2015). Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides 71: 296-303.
  • Wang X, Song Y, Li J, Liu H, Xu X et al. (2007). A new family of antimicrobial peptides from skin secretions of Rana pleurade. Peptides 28 (10): 2069-2074.
  • Wang A, Wang J, Hong J, Feng H, Yang H et al. (2008). A novel family of antimicrobial peptides from the skin of Amolops loloensis. Biochimie 90: 863-867.
  • Wang H, Yan X, Yu H, Hu Y, Yu Z et al. (2009). Isolation, characterisation and molecular cloning of new antimicrobial peptides belonging to the brevinin–1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae). Biochimie 91: 540-547.
  • Wang G (2012). Natural antimicrobial peptides as promising anti– HIV candidates. Current Topics in Peptide & Protein Research 13: 93.
  • Wang G, Wang Y, Ma D, Liu H, Li Jet al. (2012a). Five novel antimicrobial peptides from the Kuhl’s wart frog skin secretions, Limnonectes kuhlii. Molecular Biology Reports 40 (2): 1097-1102. doi: 10.1007/s11033–012–2152–4.
  • Wang H, Yu Z, Hu Y, Yu H, Ran R et al. (2012b). Molecular cloning and characterisation of antimicrobial peptides from skin of the broad folded frog, Hylarana latouchii. Biochimie 94: 1317- 1326.
  • Wang G, Li X, Wang Z (2016). APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research 44: D1087-D1093.
  • Wells KD (2007). The ecology and behaviour of amphibians. Chicago, IL, USA: University of Chicago Press.
  • Xiao Y, Liu C, Lai R (2011). Antimicrobial peptides from amphibians. Bio Molecular Concepts 2: 1-2. doi: 10.1515/bmc.2011.006
  • Yang S, Huang CM (2007). Recent advances in protein profiling of tissues and tissue fluids. Expert Review of Proteomics 4 (4): 515-529. doi: 10.1586/14789450.4.4.515
  • Yasin B, Pang M, Turner JS, Cho Y, Dinh NN et al. (2000). Evaluation of the inactivation of infectious herpes simplex virus by host– defense peptides. European Journal of Clinical Microbiology & Infectious Diseases 19: 187-194.
  • Yeaman MR, Yount NY (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews 55: 27-55.
  • Yuan Y, Zai Y, Xi X, Ma C, Wang L et al. (2019). A novel membrane– disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti–MRSA effect using Galleria mellonella model. Biochimica et Biophysica Acta (BBA)–General Subjects 1863 (5): 849-856.
  • Zahri MSA, Darnis DS, Hamid THTA (2015). Protein profiles and antimicrobial activity of common Sunda toad, Duttaphrynus melanostictus paratoid secretions. In: 3rd International Conference on Biological, Chemical & Environmental Sciences (BCES–2015); Kuala Lumpur, Malaysia. pp. 56-58.
  • Zasloff M (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterisation of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences USA 84: 5449-5453.
  • Zhou J, McClean S, Thompson A, Zhang Y, Shaw C et al. (2006). Purification and characterisation of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides 27: 3077-3084.