Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model

Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model

The spatial scale of environmental layers is an important factor to consider in developing an understanding of ecological processes. This study employed Maxent modeling to investigate the geographic distribution of goitered gazelle, Gazellasubgutturosa(Güldenstädt, 1780), in central Iran using uncorrelated variables at a spatial resolution of 250 m. We used spatial downscaling to downscale WorldClim data to 250-m resolution. We evaluated the sensitivity of the model to different grain and extent sizes from 250 m to 3 km. We compared the performance of the model at different scales using suitability indexes (AUC) and predicted habitat areas. Two models performed with AUC values higher than random (AUCun = 0.957, AUCpu = 0.953). The distribution of potential habitats at 250-m grid size was strongly influenced by bioclimatic data, vegetation type and density, and elevation. There were few spatial divergences between uncorrelated and pruned models. The mean AUC across eight different spatial scales ranged from 0.936 to 0.959. There was a significant negative correlation between grain size and AUC (R2 = 0.57). An increase in grain size increased the predicted habitat area. The extent size and AUC showed a positive correlation (R2 = 0.18). Predicted suitability habitat also decreased as extent size increased (R2 = 0.49). Spatial congruence AUC fluctuated within a small range and the maximum difference occurred between models of 1 × 1 and 2.5 × 2.5 km. These results showed that an increase in extent size is more accurate than an increase in grain size, and the maximum accuracy for predicting distribution of goitered gazelle in Iran was obtained if the grain size and extent size were 750 m.

___

  • Ahmadzadeh F, Flecks M, Carretero MA, Bohme W, Ilgaz C, Engler GO, Harris DJ, Uzum N, Rodder D (2013). Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. J Biogeogr 40: 1807-1818.
  • Bagherirad E, Ahmad N, Amirkhani M, Abdullah M, Mesdaghi, M, Kabudi A (2014). Seasonal habitat use of Persian Gazelles (Gazella subgutturosa subgutturosa) based on vegetation parameters at Golestan National Park, Iran. Arid Land Res Manag 28: 464-484.
  • Baharav D (1982). Desert habitat partitioning by the dorcasgazelle. J Arid Environ 5: 323-335.
  • Bailey RG (1985). Ecological regionalization in Canada and the United States. Geoforum 16: 265-275.
  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC et al. (2011). Has the earth’s sixth mass extinction already arrived? Nature 471: 51-57.
  • Beatty GE, Provan J (2014). Phylogeographical analysis of two cold-tolerant plants with disjunct Lusitanian distributions does not support in situ survival during the last glaciation. J Biogeogr 41: 2185-2193.
  • Beck JL, Peek LM (2005). Great Basin summer range forage quality: do plants nutrients meet elk requirements? West N Am Naturalist 65: 516-527.
  • Boria RA, Olson LE, Goodman SM, Anderson, RP (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275: 73-77.
  • Cabeza M, Arponen A, Jäättelä L, Kujala H, Van Teeffelen A, Hanski I (2010). Conservation planning with insects at three different spatial scales. Ecography 33: 54-63.
  • Carnaval AC, Moritz C (2008). Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35: 1187-1201.
  • Davis FW, Borchert M, Meentemeyer RL, Flint AL, Rizzo DM (2010). Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region, California. Forest Ecol Manag 259: 2342-2354.
  • Durmuş M (2010). Determination of home range size and habitat selection of gazelles (Gazella subgutturosa) by GPS telemetry in Şanlıurfa. MSc, Middle East Technical University, Ankara, Tu r k e y.
  • Elith J, Graham CH, Anderson RP (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.
  • Elith J, Phillips S, Hastie T, Dudík M, Chee Y, Yates C (2010). A statistical explanation of MaxEnt for ecologists. Diver Dist 17: 43-57.
  • Engler R, Guisan A, Rechsteiner L (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41: 263-274.
  • Flint LE, Flint AL (2012). Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecological Processes 1: 2.
  • Fourcade Y, Engler JO, Rodder D, Secondi J (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS One 9: e97122.
  • Franklin J (2009). Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK: Cambridge University Press.
  • Gaston KJ (1994). Rarity. Population and Community Biology Series 13. London, UK: Chapman and Hall.
  • Giles JR, Peterson AT, Busch JD, Olafson PU, Scoles GA, Bavey R, Pound JM, Kammlah DM, Lohmeyer KH, Wagner DM (2014) Invasive potential of cattle fever ticks in the southern United States. Parasite Vector 7: 189.
  • Gottschalk TK, Aue B, Hotes S, Ekschmitt K (2011). Influence of grain size on species–habitat models. Ecol Model 222: 3403-3412.
  • Graf RF, Bollmann K, Suter W, Bugmann H (2005). The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landscape Ecol 20: 703-717.
  • Graham CH, Ferrier S, Huettmann F, Moritz C, Peterson AT (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19: 497-503.
  • Groves CP, Grubb P (2011). Ungulate Taxonomy. Baltimore, MD, USA: John Hopkins University Press.
  • Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006). Using niche-based models to improve the sampling of rare species. Conserv Biol 20: 501-511.
  • Guisan A, Graham CH, Elith J, Huettmann F (2007). Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13: 332-340.
  • Guisan A, Thuiller W (2005). Predicting species distribution: offering more than simple habitat models. Ecol Lett 8: 993-1009.
  • Habibi K (2001). Pakistan. In: Mallon DP, Kingswood SC, editors. Antelopes. Part 4: North Africa, the Middle East and Asia. Global Survey and Regional Action Plans. Gland, Switzerland: IUCN/SSC Antelope Specialist Group, IUCN, pp. 122-128.
  • Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30: 751-777.
  • Henderson-Sellers A, Wilson MF, Thomas G (1982). The effect of spatial resolution on archives of land cover type. Clim Chang 7: 391-402.
  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965-1978.
  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027-2036.
  • Hobson RD (1972). Surface roughness in topography: quantitative approach. In: Chorley RJ, editor. Spatial Analysis in Geomorphology. London, UK: Metheur, pp. 225-245.
  • Hosseini SZ, Kappas M, Zare Chahouki MA, Gerold G, Erasmi S, Rafiei Emam A (2013). Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics. Ecol Inform 18: 61-68.
  • Hu J, Jiang Z (2010). Predicting the potential distribution of the endangered Przewalski’s gazelle. J Zool 282: 54-63.
  • Huettmann F, Diamond AW (2006). Large-scale effects on the spatial distribution of seabird in the Northwest Atlantic. Land Ecol 21: 1089-1108.
  • Jiang ZW, Takatsuki S, Li J, Wang W, Gao Z, Ma J (2002). Seasonal variations in foods and digestion of Mongolian gazelles in China. J Wildl Manage 66: 40-47.
  • Kailihiwa SH (2015) Using maxent to model the distribution of prehistoric agricultural features in a portion of the Hōkūli‘a subdivision in Kona, Hawaii. MSc thesis, University of Southern California, Los Angeles, CA, USA.
  • Khaki Sahneh S, Nouri Z, Alizadeh Shabani A, Ahmadi M, Dehdar Dargahie M (2014). Bioclimatic niche model to predict Afghan Pika (Ochotonarufescens) distribution range in Iran. Biological Forum – An International Journal 6: 98-109.
  • Linke J, Franklin SE, Huettmann F, Stenhouse GB (2005). Seismic cutlines, changing landscape metrics and grizzly bear landscape use in Alberta. Landcape Ecol 20: 811-826.
  • Lomba A, Pellissier L, Randin C, Vicente J, Moreira F, Honrado J, Guisan A (2010). Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biol Conserv 143: 2647-2657.
  • Martin L (2000). Gazelle (Gazella spp.) behavioral ecology: predicting animal behaviour for prehistoric environments in south-west Asia. J Zool 250: 13-30.
  • Mendelssohn H, Yom-Tov Y, Groves CP (1995). Gazellagazella. Mamm Species 490: 1-7.
  • Mondal K, Sankar K, Qureshi Q (2013). Factors influencing the distribution of leopard in a semiarid landscape of Western India Acta Theriol 58: 179-187.
  • Morelle K, Lejeune P (2015). Seasonal variations of wild boar Susscrofa distribution in agricultural landscapes: a species distribution modeling approach. Eur J Wildl Res 61: 45-56.
  • Moreno R, Zamora R, Molina JR, Vasquez A, Herrera MA (2011). Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using maximum entropy (Maxent). Ecol Inform 6: 364-370.
  • Mowlavi M (1978). Ecological studies of the goitered gazelle (GazellaSubgutturosa) in Khosh Yeilagh Wildlife Refuge, Iran. MSc thesis, Michigan State University, East Lansing, MI, USA.
  • Olson KA, Murray MG, Fulle TK (2010). Vegetation composition and nutritional quality of forage for gazelles in Eastern Mongolia. Rangeland Ecol Manage 63: 593-598.
  • Papes M, Gaubert P (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity Distrib 13: 890-902.
  • Parolo G, Rossi G, Ferrarini A (2008). Toward improved species niche modelling: Arnicamontana in the Alps as a case study. J Appl Ecol 45: 1410-1418.
  • Peterson AT, Nazakawa Y (2008). Environmental data sets matter in ecological niche modelling: an example with Solenopsis invictaand Solenopsis richteri. Glob Ecol Biogeogr 17: 135-144.
  • Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231-259.
  • Polak T, Saltz D (2011). Reintroduction as an ecosystem restoration technique. Conserv Biol 25: 424-427.
  • Porfirio LL, Harris RMB, Lefroy EC, Hugh S, Gould SF, Lee G, Bindoff NL, Mackey B (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS One 9: e113749.
  • Primack R (2008). A Primer of Conservation Biology. 4th ed. Sunderland, MA, USA: Sinauer Associates.Schaller GB (1998). Wildlife of the Tibetan Steppe.
  • Chicago, IL, USA: University of Chicago Press. Schoener TW (1968). Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704-726.
  • Scott JM, Heglund PJ, Morrison ML (2002). The influence of spatial scales on landscape description and wildlife habitat assessment. In: Covelo CA, editor. Predicting Species Occurrences: Issues of Accuracy and Scale. Washington, DC, USA: Island Press.
  • Seo C, Thorne JH, Hannah L, Thuiller W (2009). Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5: 39-43.
  • Song W, Kim E, Lee D, Lee M, Jeon SW (2013). The sensitivity of species distribution modeling to scale differences. Ecol Model 248: 113-118.
  • Stockwell DRB, Peters DP (1999). The GARP modelling system: Problems and solutions to automated spatial prediction. Internat J Geogr Infor Syst 13: 143-158.
  • Tagil S, Jenness J (2008). GIS-based automated landform classification and topographic, landcover and geologic attributes of landform around the Yazoren Polje, Turkey. J Appl Sci 8: 910-921.
  • Trethowan PD, Robertson MP, McConnachie AJ (2010). Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77: 137-146.
  • Turner MG, Dale VH, Gardner RH (1989). Predicting across scales: theory development and testing. Landscape Ecol 3: 245-252.
  • Weiss A (2001). Topographic position and landform analysis. Poster presentation. In: Environmental Sciences Research Institute User Conference; 2005; San Diego, CA, USA.
  • Wiens JA (1989). Spatial scaling in ecology. Funct Ecol 3: 385-397.
  • Xu W, Xia C, Lin J, Yang W, Blank DA, Qiao J, Liu W (2012). Diet of Gazellasubgutturosa (Guldenstaedt, 1780) and food overlap with domestic sheep in Xinjiang, China. Folia Zool 61: 54-60.
  • Yoshihara Y, Ito TY, Lhagvasuren B, Takatsuki S (2008). A comparison of food resources used by Mongolian gazelles and sympatric livestock in three areas in Mongolia. J Arid Environ 72: 48-55.