Identification and characterisation of crustacean hyperglycaemic hormone (CHH) from Mediterranean shore crab Carcinus aestuarii

Identification and characterisation of crustacean hyperglycaemic hormone (CHH) from Mediterranean shore crab Carcinus aestuarii

Crustacean hyperglycaemic hormone (CHH) is a neuropeptide that was originally identified in the X-organ/sinus gland complex of the eyestalks (ESs) in crustaceans. Several CHH isoforms and spliced variants were later identified in other tissues, and their functions have still not been completely unveiled. In this study, the identification and characterisation of the conventional CHU prepropeptide from the ESs of the littoral crab, Carcinus aestuarii, via rapid amplification of cDNA ends was reported. The identified CHH resulted in a coding sequence of 429 bp, an est imatedprotein of 142 aa with a signal peptide of 26 aa, followed by a CHH precursor-related peptide of 40 aa and a mature peptide of 72 aa. The amino acid sequence of Caestuarii CHH was also compared, by similarity, with Gills from Brachyura infraorder, which showed the highest similarity (98.6%) to the CHH peptide from Carcinus maenas. None of CHH members were reported from this species and being proved by several studies that CHH is produced also during stress conditions, the identification of the full length of the CHH in C. aestuarii opens a new wayin the possibly of studying stress response in Mediterranean shore crab by monitoring of the neuropeptide expression.

___

  • Abramowitz A, Hisaw F, Papandrea D (1944). The occurrence of a diabetogenic factor in the eyestalk of crustaceans. Biological Bulletin 86: 1-5.
  • Aliko V, Hajdaraj GN, Caci A, Faggio C (2015). Copper induced lysosomal membrane destabilisation in haemolymph cells of Mediterranean green crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Brazilian Archives of Biology and Technology 58 (5): 750-756. doi: 10.1590/S1516- 89132015050244
  • Böcking D, Dircksen H, Keller R (2002). The crustacean neuropeptides of the CHH/ MIH/GIH family: structures and biological activities. In: Wiese K (editor). The Crustacean Nervous System. Berlin, Germany: Springer, pp. 84-97.
  • Chan SM, Gu P, Chu KH, Tobe SS (2003). Crustacean neuropeptide genes of the CHH/MIH/GIH family: implications from molecular studies. General and Comparative Endocrinology 134 (3): 214-219. doi: 10.1016/s0016-6480(03)00263-6
  • Chang CC, Tsai TW, Hsiao NW, Chang CY, Lin CL et al. (2010). Structural and functional comparisons and production of recombinant crustacean hyperglycemic hormone (CHH) and CHH-like peptides from the mud crab Scylla olivacea. General and Comparative Endocrinology 167 (1): 68-76. doi: 10.1016/j. ygcen.2010.02.013
  • Chang E, Prestwich G, Bruce M (1990). Amino acid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, Homarus americanus. Biochemical and Biophysical Research Communications 171: 818-826. doi: 1016/0006-291X(90)91219-I
  • Chen SH, Lin CY, Kuo CM (2004). Cloning of two crustacean hyperglycemic hormone isoforms in freshwater giant prawn (Macrobrachium rosenbergii): evidence of alternative splicing. Marine Biotechnology 6 (1): 83-94. doi: 10.1007/s10126-003- 0014-8
  • Chen SH, Lin CY, Kuo CM (2005). In silico analysis of crustacean hyperglycemic hormone family. Marine Biotechnology 7 (3): 193-206. doi: 10.1007/s10126-004-0020-5
  • Christie AE, Stemmler EA, Dickinson PS (2010). Crustacean neuropeptides. Cellular and molecular life sciences 67 (24): 4135-416. doi: 10.1007/s00018-010-0482-8
  • Chung JS, Webster SG (2003). Moult cycle related changes in biological activity of moult‐inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. Europian Journal of Biochemistry 270 (15): 3280-3288. doi: 10.1046/j.1432-1033.2003.03720.x
  • Chung JS, Zmora N, Katayama H, Tsutsui N (2009). Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. General and Comparative Endocrinology 166 (3): 447-454. doi: 10.1016/j.ygcen.2009.12.011
  • Darriba D, Posada D, KozlovMA, StamatakisA, Morel B et al. ( 2019). ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37 (1): 291-294. doi: 10.1093/molbev/msz189
  • Dircksen H (1990). Immunocytochemical identification of the neurosecretory products of the pericardial organs of Carcinus maenas. Frontiers in Crustacean Neurobiology 348 (1): 487-491. doi: 10.1002/cne.903480104
  • Dircksen H (1998). Conserved crustacean cardioactive peptide (CCAP) neuronal networks and functions in arthropod evolution. In: Coast GM, Webster SG (editors). Recent Advances in Arthropod Endocrinology. Cambridge, UK: Cambridge University Press, pp: 302-333.
  • Dircksen H, Böcking D, Heyn U, Mandel C, Chung JS et al. (2001). Crustacean hyperglycemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochemical Journal 356 (1): 159-170. doi: 10.1042/0264- 6021:3560159
  • Duangprom S, Kornthong N, Suwansa-ard S, Srikawnawan W, Chotwiwatthanakun C et al. (2017). Distribution of crustacean hyperglycemic hormones (CHH) in the mud crab (Scylla olivacea) and their differential expression following serotonin stimulation. Aquaculture 468: 481-488. doi: 10.1016/j.aquaculture.2016.11.008
  • Fanjul-Moles ML (2006). Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 142 (3-4): 390-400. doi: 10.1016/j.cbpc.2005.11.021
  • Fu C, Huang X, Gong J, Chen X, Huang H et al. (2016). Crustacean hyperglycaemic hormone gene from the mud crab, Scylla paramamosain: cloning, distribution and expression profiles during the moulting cycle and ovarian development. Aquaculture Research 47 (7): 2183-2194. doi: 10.1111/are.12671
  • Giulianini PG, Edomi P (2006). Neuropetides controlling reproduction and growth in Crustacea: a molecular approach. In Invertebrate Neuropeptides and Hormones: Basic Knowledge and Recent Advances. In: Satake H (editor). Kerala, India: Transworld Research Network, pp. 225-252.
  • Hanström B (1931): Neue untersuchungen über sinnesorgane und nervensystem der crustaceen I. Zeitschrift für Morphologie und Ökologie der Tiere 23: 80-236 (in German). doi: 10.1007/ BF00446350
  • Hanström B (1937): Die sinusdrüse und der hormonal bedingte farbwechsel der crustaceen. Kungliga Svenska Vetenskapsakademiens Handlingar 16: 1-99.
  • Jones DT, Taylor WR, Thornton JM (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8 (3): 275-282. doi: 10.1093/bioinformatics/8.3.275
  • Kegel G, Reichwein B, Tensen CP, Keller R (1991). Amino acid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, Orconectes limosus: emergence of a novel neuropeptide family. Peptides 12 (5): 909-913. doi: 10.1016/0196- 9781(91)90036-o
  • Keller R, Kegel G, Reichwein B, Sedlmeier D, Soyez D (1999). Biological effects of neurohormones of the CHH/MIH/GIH peptide family in crustacean. In: Roubos EW, Wendelaar Bonga SE, Vaudry H, De Loof A (editors). Recent Developments in Comparative Endocrinology and Neurobiology. Maastricht, Netherlands: Shaker Publishing, pp. 209- 212.
  • Keller R, Orth HP (1990). Hyperglycemic neuropeptides in crustaceans. Progress in Clinical and Biological Research 342: 265-271.
  • Kibbe WA (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Research. 35: W43-W46. doi: 10.1093/ nar/gkm234
  • Koller G (1925). Farbwechsel bei Crangon vulgaris. Verhandlungen der Deutschen Zoologischen Gesellschaft 30: 128-132.
  • Koller G (1928). Versuche über die inkretorischen Vorgänge beim Garneelen farbwechsel. Zeitschrift für vergleichende Physiologie 8: 601-612.
  • Lacombe C, Grève P, Martin G (1999). Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides 33 (1): 71-80. doi: 10.1054/npep.1999.0016
  • Lee CY, Tsai KW, Tsai WSH, Jiang JY, Chen YJ (2014). Crustacean hyperglycemic hormone: structural variants, physiological function, and cellular mechanism of action. Journal of Marine Science and Technology 22 (1): 75-81. doi: 10.6119/JMST-013- 0308-1
  • Matozzo V, Marin MG. (2010). The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: a first survey. Fish Shellfish Immunology 28 (4): 534-541. doi: 10.1016/j.fsi.2009.12.003
  • Matozzo V, Gallo C, Marin MG (2011). Effects of temperature on cellular and biochemical parameters in the crab Carcinus aestuarii (Crustacea, Decapoda). Marine Environmental Research 71 (5): 351-356. doi: 10.1016/j.marenvres.2011.04.001
  • Montagné N, Soyez D, Gallois D, Ollivaux C, Toullec JV (2008). New insights into evolution of crustacean hyperglycaemic hormone in decapods--first characterization in Anomura. FEBS Journal 275 (5): 1039-1052. doi: 10.1111/j.1742-4658.2007.06245.x
  • Nielsen H (2017). Predicting secretory proteins with SignalP. In: Kihara D (editor). Protein Function Prediction. Methods in Molecular Biology, Vol. 1611. New York, NY, USA: Humana Press, pp. 59- 73.
  • Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC (2018). Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics 19 (1): 711. doi: 10.1186/ s12864-018-5057-3
  • Qyli M, Aliko V (2017). The impact of short-term exposure to hypoxia on Mediterranean crab Carcinus aestuarii. Albanian Journal of Agriculture Sciences 16: 399-405.
  • Qyli M, Aliko V, Faggio C (2020). Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: evaluation of hemocyte toxicity and its possible effects on immune response. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 231: 108739. doi: 10.1016/j.cbpc.2020.108739
  • Qyli M, Faggio C, Aliko V (2017). Copper influence on glycemic hormonal regulation by the eyestalks in the Mediterranean crab, Carcinus aestuarii. In: Petrotos K, Leontopoulos S (editors). Book of Abstracts of 3rd FaBE2017 - International Conference on Food and Biosystems Engineering. Rhodes Island, Greece: The Technological Institute of Thessaly, pp. 438-444.
  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67 (5): 901-904. doi: 10.1093/ sysbio/syy032
  • Roman J, Palumbi SR (2004). A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Molecular ecology 13: 2891-2898. doi: 10.1111/j.1365- 294X.2004.02255.x
  • Ronquist F ( 2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539-542.
  • Santos EA, Keller R (1993). Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: current perspectives. Comparative Biochemistry and Physiology Part A 106 (3): 405-411. doi: 10.1016/0300-9629(93)90234-U
  • Soyez D (1997). Occurrence and diversity of neuropeptides from the crustacean hyperglycemic hormone family in arthropods: a short review. Annals of the New York Academy of Sciences 814 (1): 319-323. doi: 10.1111/j.1749-6632.1997.tb46174.x
  • Soyez D, Laverdure AM, Kallen J, Van Herp F (1998). Demonstration of a cell-specific isomerization of invertebrate neuropeptides. Neuroscience 82: 935-942.
  • Spanings-Pierrot C, Soyez D, Van Herp F, Gompel M, Grousset E et al. (2000). Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. General and Comparative Endocrinology 119: 340-350.
  • Toullec JY, Serrano L, Lopez P, Soyez D, Spanings-Pierrot C (2006). The crustacean hyperglycemic hormones from an euryhaline crab Pachygrapsus marmoratus and a fresh water crab Potamon ibericum: eyestalk and pericardial isoforms. Peptides 27: 1269- 1280.
  • Tsai KW, Chang SJ, Wu HJ, Shih HY, Chen CH et al. (2008). Molecular cloning and differential expression pattern of two structural variants of the crustacean hyperglycemic hormone family from the mud crab Scylla olivacea. General and Comparative Endocrinology 159 (1): 16-25. doi: 10.1016/j. ygcen.2008.07.014
  • Untergasser A (2012). Primer3 new capabilities and interfaces. Nucleic Acids Research 40 (15): 115. doi: 10.1093/nar/gks596.
  • Van Herp F (1998). Molecular, cytological and physiological aspects of the crustacean hyperglycemic hormone family. In: Coast GM, Webster SG (editors). Recent Advances in Arthropod Endocrinology. Cambridge, UK: Cambridge University Press, pp. 53-70.
  • Webster SG (1998). Neuropeptides inhibiting growth and reproduction in crustaceans. Seminar Series-Society for Experimental Biology 65: 33-52.
  • Webster SG, Keller R, Dircksen H (2012). The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. General and Comparative Endocrinology 175 (2): 217-233. doi: 10.1016/j.ygcen.2011.11.035
  • Wu HJ, Tsai WS, Huang SY, Chen YJ et al. (2012). Identification of crustacean hyperglycemic hormone (CHH) and CHHlike (CHH-L) peptides in the crayfish Procambarus clarkii and localization of functionally important regions of CHH. Zoological Studies 51 (3): 288-297.
  • Yu N, Han C, Liu Z (2020). In silico identification of the neuropeptidome of the pond wolf spider Pardosa pseudoannulata. General and Comparative Endocrinology 285: 113271. doi: 10.1016/j.ygcen.2019.113271
  • Zhang Y, Buchberger A, Muthuvel G, Li L (2015). Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress. Proteomics 15 (23-24): 3969-3979. doi: 10.1001/ pmic.201500256
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Assessment of the zooplankton community structure of the coastal Uzungol Lagoon (Kizilirmak Delta, Turkey) based on community indices and physicochemical parameters

Ceren Deniz ÖZDEMİR, Yasemin SAYGI, Ertunç GÜNDÜZ, Fatma Yıldız DEMİRKALP, Çağaşan KARACAOĞLU

Ceren Deniz OZDEMİR, Yasemin SAYGİ, Ertunc GUNDUZ, Fatma Yildiz DEMİRKALP, Cagasan KARACAOGLU

Assessment of entomopathogenic nematodes and their symbiotic bacteria to control the stink bugs Euschistus heros and Dichelops melacanthus (Heteroptera: Pentatomidae) in the soybean-corn succession system

Samanta Letícia LOPES NANZER, Gustavo Henrique RECCHIA, Julie Giovanna CHACON-OROZCO, Raphael SATOCHI ABE SILVA, Jorge FRANCO MARINGOLI CARDOSO, Luis GARRIGÓS LEITE

Ilhan COSAR, Tarik DANİSMAN, Ersen Aydin YAGMUR

Larvicidal, and cytoxicity of Lepidium sativum L. seed extract against Culex pipiens L. (Diptera: Culicidae)

Lamya Ahmed AL- KERIDIS, Rania Ali EL HADI MOHAMED, Nael ABUTAHA, Fahd A. AL-MEKHLAFI, Amin A. AL-DOAISS, Thikra A. N. ALMASHAAN, Muhammad A. WADAAN

Evaluation on reducing toxicity of fluoxastrobin with doped TiO2 nanoparticles

Emrah AKGEYİK, Duygu ÖZHAN TURHAN, Abbas GÜNGÖRDÜ, Nesrin ÖZMEN, Meltem ASİLTURK, Murat ÖZMEN, Sema ERDEMOĞLU

A contribution to the biogeography and taxonomy of two Anatolian mountain brook newts, Neurergus barani and N. strauchii (Amphibia: Salamandridae) using ecological niche modeling

Mehmet Kürşat ŞAHİN, Muammer KURNAZ

Yigit Ali TATLİ, Refik BOZBUGA, Goksel OZER, Fouad MOKRİNİ, Rachid LAHLALİ, Abdelfattah DABABAT, Mustafa IMREN

Sedat PER, Kubra CUBUKCU, Ayse TOLUK, Nusret AYYİLDİZ

Muammer KURNAZ, Mehmet Kursat SAHİN