Evaluation on reducing toxicity of fluoxastrobin with doped TiO2 nanoparticles

Evaluation on reducing toxicity of fluoxastrobin with doped TiO2 nanoparticles

In this study, toxic effects caused by the degradation of fluoxastrobin, which is a commonly used fungicide where newly synthesized manganese or sulfur-doped TiO2 nanoparticles exist were evaluated. The characterization study of nanoparticles was performed by scanning an electron microscopy (SEM), X-ray diffractometry, Brunau-Emmet-Teller analysis, X-ray fluorescence spectroscopy, and UV-Vis (ultraviolet-visible) reflectance spectra. Subsequently, the photocatalytic performance of nanoparticles, their toxicity, and the photocatalytic degradation products of fluoxastrobin with the same nanoparticles were tested during the two development stages of Xenopus laevis. The LC(50)s of fluoxastrobin were determined on test organisms, and a 5 mg L-1 fluoxastrobin was selected to evaluate the photocatalytic degradation capacity due to toxicity studies. The sublethal effects of the nanoparticles and the degradation product of fluoxastrobin were assessed with embryonic malformations and biochemical marker responses. Sulfur-doped TiO2 was found to be more effective compared to manganese-doped TiO2 for the degradation of fluoxastrobin, photocatalytically. On the other hand, even if the tested nanoparticles were not lethal, they caused effects such as growth retardation and changes in biochemical responses on organisms.

___

  • Adetutu EM, Ball AS, Osborn AM (2008). Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities. Journal of Applied Microbiology 105: 1777-1790.
  • Akbari A, Aminib M, Tarassolic A, Eftekhari-Sisb B, Ghasemian N et al. (2018). Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & NanoObjects 14: 19-48.
  • Alkayal NS, Hussein MA (2019). Photocatalytic degradation of atrazine under visible light using novel Ag@Mg4 Ta2O9 nanocomposites. Scientific Reports 9: 7470
  • Amalraj A, Pius A (2015). Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. Journal of Water Process Engineering 7: 94-101
  • Andreescu S, Ornatska M, Erlichman JS, Estevez A, Leiter JC (2012) Biomedical applications of metal oxide nanoparticles In: Matijević E (editor) Fine Particles in Medicine and Pharmacy. Springer Publications, pp 57-100.
  • ASTM (2003) American society for testing and materials, standard guide for conducting the frog embryo teragonesis assay-Xenopus (FETAX), E1439-98. In: ASTM Standards on Biological Effects and Environmental Fate. Vol. 11.05. Philadelphia, PA, USA: Cornell University, pp. 447-457.
  • Bacchetta R, Santo N, Fascio U, Moschini E, Freddi S et al. (2012). Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology 6: 381-398.
  • Birhanli A, Emre FB, Sayilkan F, Gungordu A (2014). Effect of nanosized TiO2 particles on the development of Xenopus laevis embryos. Turk Journal Biology 38: 283-288.
  • Birhanli A, Ozmen M (2005). Evaluation of the toxicity and teratogenity of six commercial textile dyes using the frog embryo teratogenesis assay-Xenopus. Drug and Chemical Toxicology 28: 51-65.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  • Budarz JF, Cooper EM, Gardner C, Hodzic E, Ferguson PL et al. (2019). Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: Assessing the impact of a multi-component degradation scenario. Journal of Hazardous Materials 372: 61-68.
  • Cao FJ, Martyniuk CJ, Wu PZ, Zhao F, Pang S et al. (2019). Long-term exposure to environmental concentrations of azoxystrobin delays sexual development and alters reproduction in zebrafish (Danio rerio). Environmental Science & Technology 53: 1672-1679.
  • Chaudhuri RG, Paria S (2012). Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews 112: 2373-2433.
  • Chen L, Song Y, Tang B, Song X, Yang H et al. (2015). Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach. Ecotoxicology and Environmental Safety 120: 418-427
  • Cruz M, Gomez C, Duran-Valle CJ, Pastrana-Martinez LM, Faria JL et al. (2017). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradationof selected pesticides and influence of the water matrix. Applied Surface Science 416: 1013-1021.
  • Cui F, Chai T, Liu X, Wang C (2017). Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna. Environmental Toxicology and Chemistry 36: 182-189.
  • Dunnick KM, Badding MA, Schwegler-Berry D, Patete JM, Koenigsmann C et al. (2014). The effect of tungstate nanoparticles on reactive oxygen species and cytotoxicity in raw 264.7 mouse monocyte macrophage cells. Journal of Toxicology and Environmental Health. Part A 77: 1251-1268.
  • EFSA (2007). Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin. EFSA Scientific Report 102: 1-84.
  • EFSA. (2012). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for fluoxastrobin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 10:3012.
  • El-Shafai NM, El-Khouly ME, El-Kemary M, Ramadan MS, Derbalah AS et al. (2019). Fabrication and characterization of graphene oxide-titanium dioxide nanocomposite for degradation of some toxic insecticides. Journal of Industrial and Engineering Chemistry 69: 315-323.
  • Gardner ST, Wood AT, Lester R, Onkst PE, Burnham N et al. (2016). Assessing differences in toxicity and teratogenicity of three phthalates, diethyl phthalate, di-n-propyl phthalate, and din-butyl phthalate, using Xenopus laevis embryos. Journal of Toxicology and Environmental Health. Part A 79: 71-82.
  • Giahi M, Pathania D, Agarwal S, Ali GAM, Chong KF et al. (2019). Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants. Studia Universitatis Babes-Bolyai Chemia 64: 7-18.
  • Güngördü A (2013). Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis. Aquatic Toxicology 140: 220-228.
  • Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry 249: 7130-7139.
  • Haynes VN, Ward JE, Russell BJ, Agrios AG (2017). Photocatalytic effects of titanium dioxide nanoparticles on aquatic organismsCurrent knowledge and suggestions for future research. Aquatic Toxicology 185: 138-148.
  • He X, Aker WG, Hwang HM (2014). An in vivo study on the photoenhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology 8 Suppl 1: 185-195.
  • Jin XD, Zhou XQ, Sun P, Lin SY, Cao WB et al. (2019). Photocatalytic degradation of norfloxacin using N-doped TiO2 : Optimization, mechanism, identification of intermediates and toxicity evaluation. Chemosphere 237: 124433.
  • Kim JO, Choi J, Lee S, Chung J (2016). Evaluation of hydrocyclone and post-treatment technologies for remediation of contaminated dredged sediments. Journal of Environmental Management 166: 94-102.
  • Konwick BJ, Garrison AW, Avants JK, Fisk AT (2006). Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 80: 372-381.
  • Kuklinska K, Cieszynska M, Wolska L, Namiesnik J (2013). Analytical and bioanalytical problems associated with the toxicity of elemental sulfur in the environment. TrAC Trends in Analytical Chemistry 48: 14-21.
  • Lagunas-Allue L, Martinez-Soria MT, Sanz-Asensio J, Salvador A, Ferronato C et al. (2012). Degradation intermediates and reaction pathway of pyraclostrobin with TiO2 photocatalysis. Applied Catalysis B: Environmental 115: 285-293.
  • Lewis KA, Tzilivakis J, Warner D, Green A (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal 22: 1050-1064.
  • Li FB, Li XZ (2002). The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48: 1103-1111.
  • Li D, Liu M, Yang Y, Shi H, Zhou J et al. (2016). Strong lethality and teratogenicity of strobilurins on Xenopus tropicalis embryos: Basing on ten agricultural fungicides. Environmental Pollution 208: 868-874.
  • Li H, Yu S, Cao F, Wang C, Zheng M et al., (2018). Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio). Ecotoxicology Environmental Safety 151: 1-9.
  • Liu L, Jiang C, Wu ZQ, Gong YX, Wang GX (2013). Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoximmethyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles. Ecotoxicology Environmental Safety 98: 297-302.
  • Lizano-Fallas V, Masis-Mora M, Espinoza-Villalobos D, Lizano-Brenes M, Rodriguez-Rodriguez CE (2017). Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. Chemosphere 182: 106-113.
  • Lu F, Astruc D (2018). Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews 356: 147-164.
  • McManamon C, O’Connell J, Delaney P, Rasappa S, Holmes JD et al. (2015). A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. Journal of Molecular Catalysis A: Chemical 406: 51-57.
  • Mondal K, Sharma A (2016). Recent advances in the synthesis and application of photocatalytic metal–metal oxide core– shell nanoparticles for environmental remediation and their recycling process. RSC Advances 6: 83589-83612.
  • Navarro S, Fenoll J, Vela N, Ruiz E, Navarro G (2009). Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. Journal of Hazardous Materials 172: 1303-1310.
  • Nations S, Wages M, Canas JE, Maul J, Theodorakis C et al. (2011). Acute effects of Fe2 O3 , TiO2 , ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83:1053-1061
  • Nieuwkoop PD, Faber J (1956) Normal Table of Xenopus laevis (daudin): A systematical and chronologica survey of the development from the fertilized egg till the end of metamorphosis. North Holland Publishing Co., Amsterdam.
  • Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T et al., (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A-General 265: 115-121.
  • Ozmen M, Gungordu A, Erdemoglu S, Ozmen N, Asilturk M (2015). Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2 . Aquatic Toxicology 165: 144-153.
  • Parihar MS, Javeri T, Hemnani T, Dubey AK, Prakash P (1997). Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology 22: 151-156.
  • Pathakoti K, Morrow S, Han C, Pelaez M, He XJ et al. (2013). Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation. Environmental Science & Technology 47: 9988-9996.
  • Andreas S, Petsas AS, Vagi VC (2017). Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light. In: Yang D (editor). Titanium Dioxide - Material for a Sustainable Environment. London: UK: IntechOpen. DOI: 10.5772/intechopen.72193
  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research 14: 11019.
  • Retamoso C, Escalona N, González M, Barrientos L, AllendeGonzález P et al. (2019). Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2 ) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry 378: 136-141.
  • Santhoshkumar P, Shivanandappa T (1999). In vitro sequestration of two organophosphorus homologs by the rat liver. ChemicoBiological Interactions 119-120: 277-282.
  • Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Erici M et al. (2000). Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquatic Toxicology 48: 431-442.
  • Uckun AA, Oz OB (2020). Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug and Chemical Toxicology. doi: 10.1080/01480545.2020.1774604
  • Ullah S, Ferreira-Neto EP, Pasa AA, Alcântara CCJ, Acuña JJS et al. (2015). Enhanced photocatalytic properties of core@shell SiO2 @TiO2 nanoparticles. Applied Catalysis B: Environmental 179: 333-343.
  • USEPA (2005) Pesticide Fact Sheet for Fluoxastrobin. United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances (7501C), 47 pages.
  • van der Oost R, Beyer J, Vermeulen NP (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13: 57-149.
  • Wightwick AM, Bui AD, Zhang P, Rose G, Allinson M et al. (2012). Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Archives of Environmental Contamination and Toxicology 62: 380-390.
  • Xu N, Shi Z, Fan Y, Dong J, Shi J et al. (1999). Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Industrial & Engineering Chemistry Research 2: 373-379.
  • Yoo-iam M, Chaichana R, Satapanajaru T (2014). Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chemical Speciation & Bioavailability 26: 257- 265.
  • Zhang C, Zhou T, Xu Y, Du Z, Li B et al. (2020). Ecotoxicology of strobilurin fungicides. Science of The Total Environment 742: 140611.
  • Zhang C, Zhang J, Zhu L, Du Z, Wang J et al. (2020). Fluoxastrobininduced effects on acute toxicity, development toxicity, oxidative stress, and DNA damage in Danio rerio embryos. Science of The Total Environment 715: 137069.
  • Zhang C, Zhou TT, Wang J, Zhang S, Zhu LS et al. (2018). Acute and chronic toxic effects of fluoxastrobin on zebrafish (Danio rerio). Science of The Total Environment 610: 769-775.
  • Zhang HY, Ji ZX, Xia T, Meng H, Low-Kam C et al. (2012). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6: 4349-4368.
  • Zhu B, Liu GL, Liu L, Ling F, Wang GX (2015). Assessment of trifloxystrobin uptake kinetics, developmental toxicity and mRNA expression in rare minnow embryos. Chemosphere 120: 447-455.
  • Zhu L, Wang H, Liu H, Li W (2015). Effect of trifloxystrobin on hatching, survival, and gene expression of endocrine biomarkers in early life stages of medaka (Oryzias latipes). Environmental Toxicology 30: 648-655.
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Assessment of entomopathogenic nematodes and their symbiotic bacteria to control the stink bugs Euschistus heros and Dichelops melacanthus (Heteroptera: Pentatomidae) in the soybean-corn succession system

Samanta Letícia LOPES NANZER, Gustavo Henrique RECCHIA, Julie Giovanna CHACON-OROZCO, Raphael SATOCHI ABE SILVA, Jorge FRANCO MARINGOLI CARDOSO, Luis GARRIGÓS LEITE

Abbas GUNGORDU, Nesrin OZMEN, Sema ERDEMOGLU, Duygu Ozhan TURHAN, Meltem ASİLTURK, Emrah AKGEYİK, Murat OZMEN

Marsilda QYLİ, Valbona ALİKO, Riccardo SGARRA, Piero Giulio GİULİANİNİ, Chiara MANFRİN

Determining some biological parameters of Aenasius arizonensis (Girault) (Hymenoptera: Encyrtidae) on cotton mealybug and the rate of parasitism in field conditions

Asime Filiz ÇALIŞKAN KEÇE, Mehmet Rifat ULUSOY, Doğancan KAHYA

Positioning entomopathogenic nematodes for the future viticulture: exploring their use against biotic threats and as bioindicators of soil health

Raquel CAMPOS-HERRERA, Ignacio VICENTE-DÍEZ, Rubén BLANCO-PÉREZ, Maryam CHELKHA, María del Mar GONZÁLEZ-TRUJILLO, Miguel PUELLES, Rasa ČEPULITĖ, Alicia POU

Evaluation on reducing toxicity of fluoxastrobin with doped TiO2 nanoparticles

Emrah AKGEYİK, Duygu ÖZHAN TURHAN, Abbas GÜNGÖRDÜ, Nesrin ÖZMEN, Meltem ASİLTURK, Murat ÖZMEN, Sema ERDEMOĞLU

Sedat PER, Kubra CUBUKCU, Ayse TOLUK, Nusret AYYİLDİZ

Indiscriminate ingestion of entomopathogenic nematodes and their symbiotic bacteria by Aedes aegypti larvae: a novel strategy to control the vector of Chikungunya, dengue and yellow fever

Farooq A. SHAH, Mostafa M. ABDOARRAHEM, Colin BERRY, Mustapha TOURAY, Selcuk HAZIR, Tariq M. BUTT

Larvicidal, and cytoxicity of Lepidium sativum L. seed extract against Culex pipiens L. (Diptera: Culicidae)

Lamya Ahmed AL- KERIDIS, Rania Ali EL HADI MOHAMED, Nael ABUTAHA, Fahd A. AL-MEKHLAFI, Amin A. AL-DOAISS, Thikra A. N. ALMASHAAN, Muhammad A. WADAAN

Contributions to the Turkish oribatid mite fauna (Acari: Oribatida) from Sakarya and Yozgat provinces

Nusret AYYILDIZ, Sedat PER, Kübra ÇUBUKÇU, Ayşe TOLUK