Compatibility of entomopathogenic nematodes with plant extracts and post-exposure virulence test under laboratory condition

Compatibility of entomopathogenic nematodes with plant extracts and post-exposure virulence test under laboratory condition

Abstract: The efficacy of both botanical pesticides and entomopathogenic nematodes (EPN) is largely dose-dependent and driven by environmental conditions. Combination of the EPNs and botanicals may enhance their efficacy; thus, we investigated the compatibility of the medicinal plants Alepidea amatymbica and Elephantorrhiza elephantina with five locally isolated EPN strains, three Steinernema (S. khoisanae, S. biddulphi and S. innovationi) and two Heterorhabditis (H. bacteriophora and Heterorhabditis sp. SGI 244). The experiments were designed to evaluate EPNs survival in plant extracts extracted using water and ethanol at 1%, 0.75%, 0.50%, 0.25% and 0.125% concentrations and nematode viability post-exposure. A concentration of 1000 IJs/mL in distilled water was used. Incubating extracts of A. amatymbica and E. elephantina with EPNs influenced the survival and virulence of the EPN species examined. The percentage survival of the EPNs post-exposure to the plant extracts was dependent on the plant extraction method and concentration in A. amatymbica but not in E. elephantina. The ethanol extraction method supported high percentage survival both at smaller and larger concentrations. The surviving infective juveniles (IJs) were virulent to Tenebrio molitor in both the aqueous and ethanol extracts of A. amatymbica and E. elephantina. However, virulence was observed to be strain-specific and not IJ concentration-dependent. Percentage mortality (against T. molitor) of strains with low percentage survival in aqueous extract of A. amatymbica compared effectively with those of higher percentage survival. The compatible relationship between extracts of the two plants and the EPN strains may lead to improved pest control in agricultural farming systems relative to either one of them applied individually.Key words: Alepidea amatymbica, compatibility, entomopathogenic nematodes, Elephanthorrhiza elephantina, survival, virulence

___

  • Abdel-Razek AS (2003). Pathogenic effects of Xenorhabdus nematophilus and Photorhabdus luminescens (Enterobacteriaceae) against pupae of the diamondback moth, Plutella xylostella (L.). Anzeiger für Schädlingskunde 76: 108- 111.
  • Akhurst RJ (1982). Antibiotic activity of Xenorhabdus spp. bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Journal of General Microbiology 128: 3061-3065.
  • Akhurst R, Smith K (2002). Regulation and Safety. In R. Gaugler (editor) Entomopathogenic Nematology. Wallingford, UK: CABI Publishing, pp. 311-332
  • Askary TH, Khan AA, Waliullah MIS, Banday SA, Iqbal U et al. (2012). Slug pest management through nematodes in agricultural and horticultural crops. In: F. Boeri, & J.A. Chung (Eds.), Nematodes: Morphology, Functions and Management Strategies (pp. 197-211). New York, NY, USA: Nova Publishers.
  • Bedding RA, Molyneux AS (1982). Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. heterorhabditidae nematoda. Nematologica 28: 354-359.
  • Boemare N, Akhurst R, Pages S, Sicard M (2003). “Entomopathogenic Bacterial Symbiont of Steinernema and Heterorhabditis: Systematics, Phylogeny, and Biodiversity,” In Abstracts of Papers, 3rd Int. Symp. on Entomopathogenic Nematodes and Symbiotic Bacteria, Session: Biodiversity. Arden Shisler Conference Center, Ohio State University, Wooster, September 4-7: 2003.
  • Bortoluzzi L, Alves LFA, Alves VS, Holz N (2013). Entomopathogenic nematodes and their interaction with chemical insecticide aiming at the control of Banana weevil borer, Cosmopolites sordidus Germar (Coleoptera: Curculionidae). Arquivos do Instituto Biológico 80: 183-192.
  • Ciche T (2007). The biology and genome of Heterorhabditis bacteriophora. WormBook: the online review of C. elegans biology, 1-9.
  • Das K, Tiwari RKS, Shrivastava DK (2010). Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. Journal of Medicinal Plants Research 4: 104-111.
  • Elizabeth A, De Nardo B, Grewal PS (2003). Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Science and Technology 13: (4) 441- 448. doi: 10.1080/0958315031000124495
  • Forst S, Clarke D (2002). Bacteria-nematode symbiosis, (pp. 55-77) Oxon, UK: CABI Publishing.
  • Gaugler R, Lewis E, Stuart RJ (1997). Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia 9: 483-489.
  • Gaugler R (2002). Entomopathogenic Nematology. CABI, UK.
  • Guo W, Yan X, Zhao G, Han R (2017). Increased efficacy of entomopathogenic nematode-insecticide combinations against Holotrichia oblita (Coleoptera: Scarabaeidae). Journal of Economic Entomology 110 (4): 4-51. doi:10.1093/jee/ tow241
  • Grewal PS, Lewis EE, Gaugler R, Campbell JF (1994). Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108: 207-215.
  • Griffin CT (2012). Perspectives on the behaviour of entomopathogenic nematodes from dispersal to reproduction: Traits contributing to nematode fitness and Biocontrol efficacy. Journal of Nematology 22: 177-184.
  • Handa SS, Khanuja SPS, Longo G, Rakesh DD (2008). Extraction technologies for medicinal and aromatic plants (First Eds.), United Nations Industrial Development Organization and the International Centre for Science and High Technology, Italy: No. 66.
  • Josende ME, Nunes SM, Müller L, Cravo MF, Monserrat JM et al. (2019). Circular Estimate Method (CEM) - a simple method to estimate Caenorhabditis elegans culture densities in liquid medium. Biological Procedures Online doi: 10.1186/s12575- 018-0089-2
  • Josenhans C, Suerbaum S (2002). The role of motility as a virulence factor in bacteria. International Journal of Medical Microbiology 291 (8): 605-614.
  • Kao CY, Lin WH, Tseng CC, Wu AB, Wang MC et al. (2014). The complex interplay among bacteria motility and virulence factors in different Escherichia coli infections. European Journal of Clinical Microbiology and Infectious Diseases 33 (12): 2157-2162.
  • Kaya HK, Stock SP (1997). Techniques in insect nematology. In: Lacey LA (ed) manual of techniques in insect pathology, (pp. 281-324). San Diego: Academic Press.
  • Koppenhöfer AM, Grewal PS (2005). Compatibility and interaction with agrochemicals and biocontrol agents. In: Nematodes as Biocontrol Agents, (pp 363-384). CABI, UK.
  • Kruitbos LM, Wilson MJ (2010). Is it time to “wave” goodbye to “nictating” nematodes? Nematology 12: 309-310.
  • Lacey LA, Georgis R (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology 44: 218- 225.
  • Lalitha TP, Jayanthi P (2012). Preliminary studies on phytochemicals and antimicrobial activity of solvent extracts of Eichhornia crassipes (Mart.) Solms. Asian Journal of Plant Science Research 2: 115-122.
  • Laznik Ž, Tóth T, Lakatos T, Vidrih M, Trdan S (2010). Control of the Colorado potato beetle (Leptinotarsa decemlineata) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae and spraying with thiametoxam. Journal of Plant Disease Protection 117: 129-135.
  • Laznik Ž, Vidrih M, Trdan S (2012). The effects of different fungicides on the viability of entomopathogenic nematodes Steinernema feltiae (Filipjev), S. feltiae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida) under laboratory condition. Chilean Journal of Agricultural Research 72 (1): 62-67.
  • Mahmoud MF (2014a). Virulence of entomopathogenic nematodes against the Jasmine Moth, Palpita unionals Hb. (Lepidoptera: Pyralidae). Egyptian Journal of Biological Pest Control 24 (2): 393-397.
  • Mahmoud MF (2014b). Efficacy of entomopathogenic nematodes to certain insect pests infesting oilseed rape in the laboratory and greenhouse. Egyptian Journal of Biological Pest Control 24 (2): 387-391.
  • Mahmoud MF (2016). Biology and use of entomopathogenic nematodes in insect pests’ biocontrol, a generic view. Cerc Agron Moldovia 49 (4): 85-105.
  • Mpofu S, Tantoh Ndinteh D, van Vuuren SF, Olivier DK, Krause RWM (2014). Interactive efficacies of Elephantorrhiza elephantina and Pentanisia prunelloides extracts and isolated compounds against gastrointestinal bacteria. South African Journal of Botany 94: 224-230.
  • Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV (2017). “Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L.,” Journal of Food Quality, Article ID 9305047.
  • Okwute S (2012). Plants as potential sources of pesticidal agents: a review. In: Soundararajan RP (ed) Pesticides - Advances in Chemical and Botanical Pesticides. IntechOpen, London, pp. 207-232
  • Otieno JA, Pallmann P, Poehling HM (2015). The combined effect of soil-applied azadirachtin with entomopathogens for integrated management of western flower thrips. Journal of Applied Entomology 140: 174-186.
  • Püntener W (1981). Manual for field trials in plant protection second edition. Agricultural Division Ciba-Geigy Limited.
  • Ramakuwela T, Hatting J, Laing MD, Hazir S. Thiebaut N (2016). In vitro solid-state production of Steinernema innovationi with cost analysis. Biocontrol Science and Technology 26 (6): 792-808.
  • Ramakuwela T, Hatting J, Laing MD, Hazir S, Thiebaut N (2018). Biological characterization of the entomopathogenic nematodes Steinernema innovation; A South African isolate. Journal of Nematology 50 (4): doi: 10.21307/jofnem-2018-049.
  • Ramakuwela T, Hatting J, Bock, CH, Vega FE, Wells L et al. (2019). Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biological Control doi: 10.1016/j. biocontrol.2019.104102
  • Rashad RK, Rameesha AA, Abid A, Muhammad A, Shahid M et al. (2018). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) and the biocide, spinosad for mitigation of the armyworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 28: 58. doi: 10.1186/s41938-018-0063-y
  • Ryssa Yu, Kulinichb OA, Turitsinc VS, Mazurind ES (2011). Mutualistic nematode–bacteria complexes associated with insects. Entomological Review 91 (7): 908-914.
  • SAS (2015). SAS/STAT user’s guide: version 9.4. Cary, NC: SAS Institute Inc.
  • Santhi VS, Salame L, Dvash L, Muklada H, Azaizeh H et al. (2017). Ethanolic extracts of Inula viscosa, Salix alba and Quercus calliprinos, negatively affect the development of the entomopathogenic Nematode, Heterorhabditis bacteriophora - a model to compare GINs developmental effect. Journal of Invertebrate Pathology 128: 31-36.
  • Santhi VS, Salame L, Muklada H, Azaizeh H, Awwad S et al. (2019). Toxicity of phenolic compounds to entomopathogenic nematodes: A case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components. Journal of Invertebrate Pathology 160: 43-53.
  • Seleshe S, Kang SN (2019). In vitro antimicrobial activity of different solvent extracts from Moringa stenopetala leaves. Preventive Nutrition and Food Science 24 (1): 70-74.
  • Shamseldean MM, Sharaby AF, Gesraha M.A, Montasser SA, Ibrahim SA (2013). Utilization of entomopathogenic nematodes combined with plant extracts and plant essential oils against grasshopper, Heteracrir littoralis. Journal of Basic and Applied Scientific Research 3 (11): 289-294.
  • Shapiro SS, Wilk MB (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 591-611.
  • Shapiro-Ilan DI, Mbata GN, Nguyen KB, Peat SM, Blackburn D et al. (2009). Characterization of biocontrol traits in the entomopathogenic nematode Heterorhaditis georgiana (Kesha strain) and phylogenetic analysis of the nematode’s symbiotic bacteria. Biological Control 51: 377-387.
  • Shapiro-Ilan DI, Cottrell TE, Mizell RF, Horton DL, Behle B et al. (2010). Efficacy of Steinernema carpocapsae for control of the lesser peachtree borer, Synanthedon pictipes: improved aboveground suppression with a novel gel application. Biological Control 54: 23-28.
  • Shapiro-Ilan DI, Han R, Dolinski C (2012). Entomopathogenic nematode production and application technology. Journal of Nematology 44: 206-217.
  • Shapiro-Ilan DI, Hazir S, Lete L. (2015). Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. Journal of Entomology 47 (3): 184-189.
  • Shapiro-Ilan DI, Hazir S, Glazer I (2017). Basic and applied research: entomopathogenic nematodes. In: Lacey LA (editor). Microbial Agents for Control of Insect Pests: from Discovery to Commercial Development and Use. Academic Press, Amsterdam, pp. 91-105
  • Skenjana NL, Poswal MA. (2018) A survey of plants used by rural small-scale farmers to control pests of cabbage in the Eastern Cape Province, South Africa. Journal of Medicinal Plants for Economic Development 2 (1), a57. doi: 10.4102/jomped. v2i1.57
  • Sudha G, Ravishankar G (2002). Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue and Organ Culture 71 (3): 181-212.
  • Wigmore SM, Naiker M, Bean DC (2016). Antimicrobial activity of extracts from native plants of temperate Australia. Pharmacognosy Communications 6: 80-84.
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Effects of temperature and duration of storage on the hatching behaviour of Heterodera latipons (Nematoda: Heteroderidae)

Mustafa İMREN, Abdelfattah DABABAT, Yiğit Ali TATLI, Göksel ÖZER, Fouad MOKRINI, Rachid LAHLALI, Refik BOZBUĞA

Compatibility of entomopathogenic nematodes with plant extracts and post-exposure virulence test under laboratory condition

Adeola Abiola OSO, Tshimangadzo RAMAKUWELA, Anofi Omotayo Tom ASHAFA

A contribution to the biogeography and taxonomy of two Anatolian mountain brook newts, Neurergus barani and N. strauchii (Amphibia: Salamandridae) using ecological niche modeling

Mehmet Kürşat ŞAHİN, Muammer KURNAZ

Ceren Deniz OZDEMİR, Yasemin SAYGİ, Ertunc GUNDUZ, Fatma Yildiz DEMİRKALP, Cagasan KARACAOGLU

Susceptibility of Agriotes spp. larvae (Coleoptera: Elateridae) to stress-and-kill strategies using spinosad and the entomopathogenic fungus Metarhizium brunneum

Tariq Mahmud BUTT, Pierre-Antoine BOURDON, https://orcid.orIan BAXTERg/0000-0002-4417-8519, Giselher GRABENWEGER

Larvicidal, and cytoxicity of Lepidium sativum L. seed extract against Culex pipiens L. (Diptera: Culicidae)

Lamya Ahmed AL- KERIDIS, Rania Ali EL HADI MOHAMED, Nael ABUTAHA, Fahd A. AL-MEKHLAFI, Amin A. AL-DOAISS, Thikra A. N. ALMASHAAN, Muhammad A. WADAAN

Positioning entomopathogenic nematodes for the future viticulture: exploring their use against biotic threats and as bioindicators of soil health

Raquel CAMPOS-HERRERA, Ignacio VICENTE-DÍEZ, Rubén BLANCO-PÉREZ, Maryam CHELKHA, María del Mar GONZÁLEZ-TRUJILLO, Miguel PUELLES, Rasa ČEPULITĖ, Alicia POU

Identification and characterisation of crustacean hyperglycaemic hormone (CHH) from Mediterranean shore crab Carcinus aestuarii

Marsilda QYLİ, Valbona ALİKO, Riccardo SGARRA, Piero Giulio GİULİANİNİ, Chiara MANFRİN

Yun-chun YE, Yi LUO, Zhao-min ZHOU

Natural animal food preference of Chinese mole shrew (Anourosorex squamipes) from an urban area: a laboratory study

Yi LUO, Yun-chun YE, Zhao-min ZHOU