Efficiency of pitfall traps and snap traps in small terrestrial mammals depends on their diet composition

Efficiency of pitfall traps and snap traps in small terrestrial mammals depends on their diet composition

We compared the monitoring of small terrestrial mammals among forest stands by pitfalls and snap traps. The captures tookplace in the Czech Republic in the Moravskoslezske Beskydy Mts. (2007–2012) on 16 plots in adult beech and spruce stands between 910and 1220 m a.s.l. In total, 14 species of small mammals were captured (12 in the snap traps and 10 in the pitfalls). Snap traps capturedthe broader species spectrum and they were more successful in capturing larger species of small terrestrial mammals consuming ahigher proportion of plant food (mice, and in particular voles). The pitfalls were more effective in capturing smaller species with apredominance of animal food (shrews). To cover the widest species spectrum of small mammals, it is appropriate to use both types oftraps. To observe the functional diversity of the community in terms of food composition, it is sufficient to use snap traps.

___

  • Adamczewska KA (1959). Untersuchungen über die Variabilität der Gelb- halsmaus, Apodemus flavicollis flavicollis (Melchior , 1834). Acta Theriologica 3: 141-190 (in German).
  • Andrzejewski R, Fejgin H, Liro A (1971). Trapability of trap-prone and trap-shy bank voles. Acta Theriologica 16: 401-412.
  • Barrett GW, Peles JD (1999). Landscape Ecology of Small Mammals. New York, NY, USA: Springer.
  • Brosset A (1966). Recherches sur la composition qualitative et quantitative des populationes de vertebres dans la foret primaire du Gabon. Biologica Gabonica 2: 163-177 (in French).
  • Butet A, Delettre YR (2011). Diet differentiation between European arvicoline and murine rodents. Acta Theriologica 56: 297-304.
  • Butet A, Paillat G, Delettre Y (2006). Factors driving small rodents assemblages from field boundaries in agricultural landscapes of western France. Landscape Ecology 21: 449-461.
  • Cardoso P, Rigal F, Carvalho JC (2015). BAT - Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution 6: 232-236.
  • Churchfield S, Rychlik L (2006). Diets and coexistence in Neomys and Sorex shrews in Bialowieza forest, eastern Poland. Journal of Zoology 269: 381-390.
  • Dickman CR (1995). Diets and habitat preferences of three species of crocidurine shrews in arid southern Africa. Journal of Zoology London 237: 499-514.
  • Heroldová M, Michalko R, Suchomel J, Zejda J (2018). Influence of no-tillage versus tillage system on common vole (Microtus arvalis) population density. Pest Management Science 74: 1346-1350.
  • Holisova V (1965). The food of Pitymys subterraneus and P. tatricus (Rodentia, Microtidae) in the mountain zone of SorbetoPiceetum. Zoologicke Listy 14: 15-28.
  • Janova E, Heroldova M, Konecny A, Bryja J (2011). Traditional and diversified crops in South Moravia (Czech Republic): habitat preferences of common vole and mice species. Mammalian Biology 76: 570-576.
  • Kalko EKV, Handley COJ (1993). Comparative studies of small mammal populations with transects of snap traps and pitfall arrays in southwest Virginia. Virginia Journal of Science 44: 3-18.
  • Lee L (1997). Effectiveness of live traps and snap traps in trapping small mammals in Kinmen. Acta Zoologica Taiwanica 8: 79- 85.
  • Leso P, Kropil R (2010). Influence of some methodological modifications on trapping efficiency and mortality of small terrestrial mammals (Rodentia). Lynx n.s. (Praha) 41: 167-173.
  • Macdonald DW, Barrett P (2005). Mammals of Britain and Europe (Collins Field Guide). London, UK: Collins.
  • Maddock AH (1992). Comparison of two methods for trapping rodents and shrews. Israel Journal of Zoology 38: 333-340.
  • Magurran AE (2004). Measuring Biological Diversity. Oxford, UK: Blackwell Science.
  • Mengak MT, Guynn DCJ (1987). Pitfalls and snap traps for sampling small mammals and herpetofauna. American Midland Naturalist 118: 284-288.
  • Nicolas V, Colyn M (2006). Relative efficiency of three types of small mammal traps in an African rainforest. Belgian Journal of Zoology 136: 107-111.
  • Pankakoski E (1979). The cone trap - a useful tool for index trapping of small mammals. Annales Zoologici Fennici 16: 144-150.
  • Pearce J, Venier L (2005). Small mammals as bioindicators of sustainable boreal forest management. Forest Ecology and Management 208: 153-175.
  • Pekar S, Brabec M (2012). Moderni analyza biologickych dat 2. Linearni modely s korelacemi v prostredi R. Brno, Czech Republic: Muni Press (in Czech).
  • Pelikan J (1970). Sex ratio in three Apodemus species. Folia Zoologica 19: 23-34.
  • Pelikan J (1975). K ujednoceni odchytoveho kvadratu a linie pro zjisťovani populacni hustoty savcu v lesich. Lynx (Praha) n.s. 17: 58-71 (in Czech).
  • Pelikan J, Zejda J, Holisova V (1977). Efficiency of different traps in catching small mammals. Folia Zoologica 26: 1-13.
  • Pinheiro J, Bates D, Deb Roy S, Sarkar D (2017). Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-131.
  • Vienna, Austria: R Foundation for Statistical Computing. Pliva K (1987). Typologicky klasifikacni system UHUL. Brandys nad Labem, Czechoslovakia: UHUL (in Czech).
  • Pucek Z (1969). Trap response and estimation of numbers of shrews in removal catches. Acta Theriologica 14: 403-426.
  • Pucek Z, Jedrzejewski W, Jedrzejewska B, Pucek M (1993). Rodent population-dynamics in a primeval deciduous forest (Bialowieza-National-Park) in relation to weather, seed crop, and predation. Acta Theriologica 38: 199-232.
  • R Core Development Team (2016). A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Santos-Filho M, da Silva DJ, Sanaiotti TM (2006). Efficiency of four trap types in sampling small mammals in forest fragments, Mato Grosso, Brazil. Mastozoologia Neotropical 13: 217-225.
  • Sheftel BI (2018). Methods for estimating the abundance of small mammals. Russian Journal of Ecosystem Ecology 2018: 3.
  • Smilauer P, Leps J (2014). Multivariate Analysis of Ecological Data Using Canoco 5. New York, NY, USA: Cambridge University Press.
  • Stanko M, Mosansky L, Fricova J, Casanova JC (1999). Comparison of two sampling methods of small mammals in the margin of a lowland forest. Biologia 54: 595-597.
  • Swenson NG (2014). Phylogenetic and Functional Ecology in R. New York, NY, USA: Springer Science+Business Media LLC.
  • ter Braak CJF, Smilauer P (2012). Canoco 5, Windows release (5.01). Software for Multivariate Data Exploration, Testing, and Summarization. Wageningen, the Netherlands: Biometris.
  • Torre I, Freixas L, Arrizabalaga A, Diaz M (2016). The efficiency of two widely used commercial live-traps to develop monitoring protocols for small mammal biodiversity. Ecological Indicators 66: 481-487.
  • Viewegh J, Kusbach A, Mikeska M (2003). Czech forest ecosystem classification. Journal of Forest Science 49: 85-93.
  • Walters BB (1989). Differential capture of deer mice with pitfalls and live traps. Acta Theriologica 34: 643-647.
  • Weldy MJ, Clinton CW, Lesmeister DB, Manning T, Linnell MA et al. (2019). Abundance and edological associations of small mammals. Journal of Wildlife Management doi: 10.1002/ jwwg.21641
  • Wiener JG, Smith MH (1972). Relative efficiencies of four small mammal traps. Journal of Mammalogy 53: 868-873.
  • Williams DF, Braun SE (1983). Comparison of pitfall and conventional traps for sampling small mammal populations. Journal of Wildlife Management 47: 841-845.
  • Zejda J (1991). A community of small terrestrial mammals. In: Penka M, Vyskot M, Klimo E, Vasicek F (editors). Floodplain Forest Ecosystem: II. After Water Management Measures. Amsterdam, the Netherlands: Elsevier. pp. 313-324.
  • Zejda J, Pelikan J, Holisova V (1977). Changes in the catch structure of small mammals during successive days of trapping. Folia Zoologica 26: 319-334.