Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats

Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats

In this study, Al 2 O 3 , CuO, and TiO 2nanoparticles (NPs) were individually administered to 60 mature female rats via oralgavage (0, 0.5, 5, and 50 mg/kg b.w. per day) for 14 days and then responses of ATPases in the erythrocytes, total oxidant status (TOS),total antioxidant status (TAS), and liver enzyme (alkaline phosphatase, ALP; alanine transaminase, ALT; aspartate transaminase, AST)levels in the serum were determined. There were sharp decreases in Na,K-ATPase activity in the erythrocytes following NP exposures.All doses of CuO caused significant (P < 0.05) inhibitions in Na,K-ATPase activity (up to 94%), while only higher doses of Al 2 O 3andTiO 2inhibited (76% 80%) the activity of Na,K-ATPase. Oppositely, the activities of Ca-ATPase (up to 274%) and Mg-ATPase (up to290%) increased significantly following TiO 2exposures. TOS levels significantly increased following Al 2 O 3(167%) and CuO (240%)exposures, though TAS levels did not change significantly in any of the exposure groups. The levels of ALP, AST, and ALT increasedfollowing NP administrations. Ti-NP increased the levels of all liver enzymes in the serum (up to 84%), while Al-NP (58%) and Cu- NP (43%) increased only ALP levels. The present study demonstrated evidence of the toxic effects of NPs, as they altered the measuredparameters in the blood, and suggests further research to better understand the environmental fate of NPs.

___

  • Ahamed M, AlSalhi, MS, Siddiqui, MKJ (2010). Silver nanoparticle applications and human health. Clin Chim Acta 411: 1841- 1848.
  • Akalin FA, Baltacioglu E, Alver A, Karabulut E (2007). Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clinical Periodont 34: 558-565.
  • Atkinson A, Gatemby AO, Lowe AG (1973). The determination of inorganic ortophosphate in biological systems. Biochimi Biophys Acta 320: 195-204.
  • Atli G, Canli M (2008). Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus . Comp Biochem Physiol 145: 282-287.
  • Atli G, Canli M (2011). Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus . Ecotoxicology 20: 1861-1869.
  • Atli G, Canli M (2013). Metals (Ag + , Cd 2+ , Cr 6+ ) affect ATPase activity in the gill, kidney and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures. Environ Toxicol 28: 707-717.
  • Canli M, Stagg RM (1996). The effects of in vivo exposure to cadmium, copper, and zinc on the activities of gill ATPases in the Norway lobster Nephrops norvegicus . Arch Environ Contam Toxicol 31: 491-501.
  • Carfagna MA, Ponsler GD, Muhoberac BB (1996). Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals. Chem Biol Interact 100: 53-65.
  • Chichova M, Shkodrova M, Vasileva P, Kirilova K, Doncheva- Stoimenova D (2014). Influence of silver nanoparticles on the activity of rat liver mitochondrial ATPase. J Nano Res 16: 1-14.
  • Elle RE, Gaillet S, Vidé J, Romain C, Lauret C, Rugani N, Rouanet JM (2013). Dietary exposure to silver nanoparticles in Sprague- Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol 60: 297-301.
  • Erel O (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37: 112-119.
  • Erel O (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochem 38: 1103-1111.
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish ( Danio rerio ). Environ Sci Technol 41: 8178-8186.
  • Guo D, Bi H, Wang D, Wu Q (2013). Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int J Biochem Cell Biol 45: 1849- 1859.
  • Heath AG (1995). Water Pollution and Fish Physiology. 2nd ed. Boca Raton, FL, USA: CRC Press.
  • Heydrnejad MS, Samani RJ, Aghaeivanda S (2015). Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice ( Mus musculus ). Biol Trace Element Res 165: 153-158.
  • Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Gu N (2015). Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species‐induced insulin resistance in mice. J Applied Toxicol 35: 1122-1132.
  • Janrao KK, Gadhave MV, Banerjee SK, Gaikwad DD (2014). Nanoparticle induced nanotoxicity: an overview. Asian J Biomed Pharma Sci 4: 1-7.
  • Jeng HA, Swanson J (2006). Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41: 2699-2711.
  • Jorgensen SW (2010). Ecotoxicology: A Derivative of Encyclopedia of Ecology. London, UK: Academic Press.
  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Ji Z (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44: 1962- 1967.
  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Lead JR (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27: 1825-1851.
  • Koksal H, Kurban S (2010). Total oxidant status, total antioxidant status, and paraoxonase and arylesterase activities during laparoscopic cholecystectomy. Clinics 65: 285-290.
  • Kumari M, Rajak S, Singh SP, Kumari SI, Kumar PU, Murty US, Rahman MF (2012). Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotech 12: 2149-2159.
  • Lei R, Yang B, Wu C, Liao M, Ding R, Wang Q (2015). Mitochondrial dysfunction and oxidative damage in the liver and kidney of rats following exposure to copper nanoparticles for five consecutive days. Toxicol Res 4: 351-364.
  • Li XB, Liu R, Liang GY, Yin LH, Zheng H (2013). Aluminum oxide nanoparticles upregulate ED1 expression in rat Olfactory Bulbs by repeated intranasal instillation. Adv Mat Res 716: 3-9.
  • Monserrat JM, Martínez PE, Geracitano LA, Amado LL, Martins CMG, Pinho GLL, Bianchini A (2007). Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol 146: 221-234.
  • Newman DJ, Henneberry H, Price CP (1992). Particle enhanced light scattering immunoassay. Ann Clin Biochem 29: 22-42.
  • Ogut S, Kucukoner E, Gultekin F, Gurbuz N (2015). A study of long- term pesticide application amongst agricultural workers: total antioxidant status, total oxidant status and acetylcholinesterase activity in blood. P Natl A Sci India B 85: 155-159.
  • Parvez S, Sayeed I, Raisuddin S (2006). Decreased gill ATPase activities in the freshwater fish Channa punctata (Bloch) exposed to a diluted paper mill effluent. Ecotox Environ Safe 65: 62-66.
  • Patlolla AK, Hackett D, Tchounwou, PB (2015). Silver nanoparticle- induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 399: 257-268.
  • Petrović V, Vodnik V, Stanojević I, Rakočević Z, Vasić V (2012). Interaction of gold nanoparticles with rat brain synaptosomal plasma membrane Na/K-ATPase and Mg 2 -ATPase. Digest J Nanomat Biostr 7: 423-433.
  • Saxena TB, Zachariassen KE, Jørgensen L (2000). Effects of ethoxyquin on the blood composition of turbot, Scophthalmus maximus L. Comp Biochem Physiol 127: 1-9.
  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010). Metal‐based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2: 544-568.
  • Sha B, Gao W, Wang S, Xu F, Lu T (2011). Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat. Composites 42: 2136-2144.
  • Sharma V, Anderson D, Dhawan A (2012). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17: 852-870.
  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ (2013). Effects of sub-acute exposure to TiO 2 , ZnO and Al 2 O 3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37: 336-347.
  • Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P (2013). Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J App Toxicol 33: 1165-1179.
  • Syama S, Reshma SC, Sreekanth PJ, Varma HK, Mohanan PV (2013). Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicol Environ Chem 95: 495-503.
  • Tang M, Zhang T, Xue Y, Wang S, Huang M, Yang Y, Lu M, Lei H, Kong L, Wang Y et al. (2011). Metabonomic studies of biochemical changes in the serum of rats by intratracheally instilled TiO 2 nanoparticles. J Nanosci Nanotech 11: 3065- 3074.
  • Thomas L (1998). Clinical Laboratory Diagnostics. Frankfurt, Germany: TH-Books.
  • Vasic VM, Colovic MB, Krstic DZ (2009). Mechanism of Na + / K + –ATPase and Mg 2+ –ATPase inhibition by metal ions and complexes. Hem Ind 63: 499-509.
  • Wang D, Guo D, Bi H, Wu Q, Tian Q, Du Y (2013). Zinc oxide nanoparticles inhibit Ca 2+ -ATPase expression in human lens epithelial cells under UVB irradiation. Toxicol In vitro 27: 2117-2126.
  • Wei D, Zhang XL, Wang YZ, Yang CX, Chen G (2010). Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy. Aust Dent J 55: 70-78.
  • Winston GW (1991). Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol 100: 173-176.
  • Winter WE, Hardt NS, Fuhrman S (2000). Immunoglobulin E: importance in parasitic infections and hypersensitivity responses. Clin Chem Lab Med 124: 1382-1385.
  • Xia T, Li N, Nel AE (2009). Potential health impact of nanoparticles. Annu Rev Publ Health 30: 137-150.
  • Yilmaz M, Rencuzogullari E, Canli M (2015). The effects of cyfluthrin on some biomarkers in the liver and kidney of Wistar rats. Environ Sci Pollut Res 22: 4747-4752.
  • Young DS, Bermes EW (1999). Specimen collection and processing: sources of biological variation. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. Philadelphia, PA: WB Saunders; 1999. pp. 42-72.
  • Yu WJ , Son JM, Lee J , Kim SH, Lee IC , Baek HS, Shin IS, Moon C , Kim SH (2014). Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats. Nanotoxicology 8: 85-92.
  • Zhang GH, Yamaguchi M, Kimura S, Higham S, Kraus-Friedmann N (1990). Effects of heavy metal on rat liver microsomal Ca 2+ - ATPase and Ca 2+ sequestering. Relation to SH groups. J Biol Chem 265: 2184-2189.
  • Zhang XD, Wu D, Shen X, Liu P X, Yang N, Zhao B, Fan FY (2011). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6: 2071-2081.