Applying stable isotopes of carbon (delta C-13) and nitrogen (delta N-15) to examine the role of pikeperch (Sander lucioperca Linnaeus, 1758) in structuring the food web of Lake Egirdir (Central Anatolia), Turkey

Applying stable isotopes of carbon (delta C-13) and nitrogen (delta N-15) to examine the role of pikeperch (Sander lucioperca Linnaeus, 1758) in structuring the food web of Lake Egirdir (Central Anatolia), Turkey

The aim of this study was to examine the role of pikeperch (Sander lucioperca L., 1758) in structuring the seasonal food web of Lake Egirdir using carbon (delta C-13) and nitrogen (delta N-15) stable isotopes. The samples for stable isotopes were collected during the spring and autumn seasons. Sander lucioperca, as expected, was determined as a top predator with a substantially higher trophic position during both seasons (3.96, spring, delta N-15 (mean +/- SE = 13.09 +/- 0.17) and delta C-13 (mean +/- SE = -17.23 +/- 0.19) (4.10, autumn, delta N-15 (mean +/- SE = 14.14 +/- 0.19) and delta C-13 (mean +/- SE = -18.15 +/- 0.02). Three different models (IsoSource, SIAR, and Bugalho et al. (2008)) were used to determine food sources that most contributed to the food of S. lucioperca. During spring, the fishes and invertebrates, Potamon potomios and Pontastacus leptodactylus, contributed most to the food of S. lucioperca, a result obtained by the 3 models. According to the IsoSource model, among the fishes, these included Vimba vimba, Capoeta pestai, Cyprinus carpio, and S. lucioperca (cannibalism); however, according to Bugalho et al. (2008) and SIAR, Vimba vimba, Cara ssius gibeleo, and Seminemacheilus ispartensis were assimilated by S. lucioperca in greater proportion during spring. During autumn, the contribution of fishes to the S. lucioperca food source increased substantially with percentages noted as 83% and 90%, a result obtained by the IsoSource and Bugalho et al. (2008) models, respectively. The SIAR model, on the other hand, identified fishes, fish eggs, and invertebrates with mean contributions of 35%, 30%, and 16%, respectively. Invertebrates were also an important food source for S. lucioperca during this season according to Bugalho et al. (2008). In conclusion, this study showed that S. lucioperca shifted its diet from invertebrates, including crayfish, during spring, to fishes during autumn, a result also supported by the increase in the trophic position of S. lucioperca from spring to the autumn. This study is the first to report results on the food content of S. lucioperca revealed using stable isotope methods in Turkey.

___

  • Akın Ş, Verep B, Turan D, Şahin C, Çelik K, et al. (2010). Barajların Nehir Besin Ağı ve Balıkların Beslenme Alışkanlıkları Üzerine Etkilerinin Duraylı Karbon (δ13C), Azot (δ15N) ve Mide Analiz Yöntemleriyle Belirlenmesi: Suat ve Hasan Uğurlu Barajlar Örneği, TÜBİTAK TOVAG Proje 107O519, 1-314 (in Turkish).
  • Apaydın Yağcı M, Alp A, Yağcı A, Uysal R (2014). Diet and prey selection of pikeperch (Sander lucioperca Linnaeus, 1758) population in Lake Eğirdir (Turkey). Archieves of Biological Sciences 66 (4): 1515-1527. doi: 10.2298/ABS1404515Y
  • Atayeter Y (2011). Eğirdir Gölü Depresyonu ve Yakın Çevresinin Genel Fiziki Coğrafyası. Fakülte Kitabevi, 172 s (in Turkish).
  • Balık S, Geldiay R (2002). Türkiye Tatlısu Balıkları Kitabı. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları IV. Baskı, 46.
  • Balık İ, Çubuk H, Karaşahin B, Özkök R, Uysal R, et al. (2006). Food and feeding habits of the pikeperch, Sander lucioperca (Linnaeus, 1758) population from Lake Eğirdir (Turkey). Turkish Journal of Zoology 30: 19-26.
  • Balık S, Ustaoğlu R (2006). Türkiye’nin Göl, Gölet ve Baraj Göllerinde gerçekleştirilen balıklandırma çalışmaları ve sonuçları. 1. Ulusal Balıklandırma ve Rezervuar Yönetimi Sempozyumu. ANTALYA (in Turkish).
  • Bugalho MN, Barcia P, Caldeira MC, Cerdeira JO (2008). Stable isotopes as ecological tracers: an efficient method for assessing the contribution of multiple sources to mixtures. Biogeosciences 5: 1351–1359. doi.org/10.5194/bg-5-1351-2008.
  • Campbell RNB (1992). Food of an introduced population of pikeperch, Stizostedion lucioperca L., in lake Eğirdir, Turkey. Aquaculture and Fisheries Management 23: 71-85.
  • Elton CS (1927). Animal Ecology, University of Chicago Press, 209 pp.
  • Finlay JC (2001). Stable-carbon-izotope ratios of river biota: ımplications for energy flow in lotic food webs. Ecology 1052- 1064.
  • France RL (1995). Carbon-13 enrichment in benthic compared to planktonic algae: food web implications. Marine Ecology and Progress Series 124: 307-312.
  • Frankiewicz P, Dabrowski K, Martyniak A, Zalewski M (1999). Cannibalism as a regulatory force of pikeperch, Stizostedion lucioperca (L.), population dynamics in the Lowland Sulejow Reservoir (Central Poland). Hydrobiologia 408/409: 47-55.
  • İnnal D, Erk’akan F (2006). Effects of exotic and translocated fish species in the inland waters of Turkey. Reviews in Fish Biology and Fisheries 16: 39-50.
  • Jenkins BA, Kitching RL, Pimm SL (1992). Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65: 249-255.
  • Kangur P, Kangur A, Kangur K (2007). Dietary importance of various prey fishes for pikeperch Sander lucioperca (L.) in large shallow lake Võrtsjärv (Estonia). Proceedings of the Estonian Academy of Sciences Biology and Ecology 56 (2): 154-167.
  • Kaunzinger CMK, Morin PJ (1998). Productivity controls foodchain propert. Nature 395: 495-497.
  • Kaymak N, Winemiller KO, Akin S, Altuner Z, Polat F, Dal T (2015). Stable isotope analysis reveals relative influences of seasonal hydrologic variation and impoundment on assimilation of primary production sources by fish in the Upper Yesilırmak River, Turkey. Hydrobiologia 753 (1): 131-147. doi:10.1007/ s10750-015-2201-9
  • Kaymak N, Winemiller KO, Akin S, Altuner Z, Polat F, Dal T, 2018. Spatial and temporal variation in food web structure of an impounded river in Anatolia. Marine and Freshwater Research 69 (9): 1453-1471. doi: 10.1071/MF17270
  • Kling GB, Fry B, O’Brien WJ (1992). Stable isotopes and planktonic food web structure in arctic Lakes. Ecology 73: 195-207.
  • Kopp D, Cucherousset J, Syväranta J, Martino A, Céréghino R et al. (2009). Trophic ecology of the pikeperch (Sander lucioperca) in its introduced areas: a stable isotope approach in southwestern France. Comptes Rendus Biologies 332 (8): 741-746. doi. org/10.1016/j.crvi.2009.04.001.
  • Lehtonen H, Hansson S, Winkler H (1996). Biology and exploitation of pike-perch, Stizostedion lucioperca (L.), in the Baltic Sea area. Annales Zoologici Fennici 33: 525-535.
  • Numann W (1958). Anadolunun muhtelif göllerinde limnolojik ve balikçilik ilmi bakimindan araştirmalar ve bu göllerde yaşayan sazanlar hakkinda özel bir etüd, İstanbul Üniversitesi Fen Fakültesi, Hidrobiyoloji Araştırma Enstitüsü Yayınlarından Sayı: 7, 114s (in Turkish).
  • Nolan ET, Britton JR (2018). Diet of invasive pikeperch Sander lucioperca: developing non-destructive tissue sampling for stable isotope analysis with comparisons to stomach contents analysis. Knowldge and Management of Aquatic Ecosystems 49: 419. doi: 10.1051/kmae/2018037
  • Parnell AC, Inger R, Bearhop S, Jackson AL ( 2010). Source partioning using stable isotopes: coping with too much variation. Plos one 5 (3).
  • Pearre SJR (1982). Estimating prey preference by predators: Uses of various indices and a proposal of another based on X2 . Canadian Journal of Fisheries and Aquatic Sciences 39: 914- 923.
  • Peltonen H, Rita H, Ruuhijarvi J (1996). Diet and prey selection of pikeperch (Stizostedion lucioperca (L.)) in Lake Vesijarvi analysed with a logit model. Annales Zoologici Fennici 33: 481-487.
  • Persic A, Roche H, Ramade, F (2004). Stable carbon and nitrogen izotope quantitative structural assessment of dominant species from the vaccarés lagoon trophic web (Camurgue Biosphere Reserve, France). Esturine Coastal and Shelf Science 60: 261- 272. doi: 10.1016/j.ecss.2004.01.009
  • Persson L (1992). Trophic interactions in temperate lake ecosystems: a test of food chain theory. The American Naturalist 140: 59- 84.
  • Peterson BJ, Fry B (1987). Stable isotopes in ecosystem studies. Annual Review of Ecological Systems 18: 293-320.
  • Phillips DL, Gregg JW (2003). Partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261-269.
  • Pinkas L, Oliphant MS, Iverson ILK (1971). Food habits of Albocore, Bluefin Tuna and Bonito in California waters. Fishery Bulletin 152: 1-105.
  • Polat N, Zengin M, Gümüş A (2011). Invasive fish species and life strategies. The Black Sea Journal of Sciences 2 (2): 63-86.
  • Popova OA, Sytina LA (1976). Food and feeding relations of eurasian perch (Perca fluviatilis) and pikeperch (Stizostedion lucioperca) in various waters of the USSR. Journal of Fisheries Research Board of Canada 34: 1559-1570.
  • Post DM, Pace ML, Hairston NG (2000). Ecosystem size determines food-chain length in lakes. Nature 405:1047-1049.
  • Post DM (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83 (3): 703-718.
  • Rounick JS, Winterbourn MJ (1986). Stable carbon isotopes and carbon flow in ecosystems. BioScience 36 (3): 171-177
  • Specziár A (2005). First year ontogenetic diet patterns in two coexisting Sander species, S.lucioperca and S.volgensis in lake Balaton. Hydrobiologia 549: 115-130. doi: 10.1007/s10750- 005-5766-x
  • Takimoto G, Post DM (2013). Environmental determinants of foodchain length: a meta-analysis. Ecological Research 28:675-681.
  • Thompson RM, Townsend CR (2005). Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108: 137-148. doi: 10.1111/j.0030- 1299.2005.11600.x
  • Vander Zanden MJ, Rasmussen JB (1996). A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecological Monographs 66 (4): 451-477.
  • Vander Zanden MJ, Rasmussen JB (1999). Primary consumer δ13C and δ15N and trophic position of aquatic consumers. Ecology 80 (4): 1395-1404.
  • Vander Zanden MJ, Shuter BJ, Lester N, Rasmussen JB (1999). Patterns of food chain length in lakes: a stable isotope study. The American Naturalist 154 (4): 406-416.
  • Vander Zanden JM, Fetzer WW (2007). Global patterns of aquatic food chain length. Oikos 116: 1378-1388. doi: 10.1111’j.0030- 1299.2007.16036.x
  • Vašek M, Eloranta A, Vejříková I, Blabolil P, Říha M et al. (2018). Stable isotopes and gut contents indicate differential resource use by coexisting asp (Leuciscus aspius) and pikeperch (Sander lucioperca). Ecology of Freshwater Fish 27 (4): 1054-1065.
  • Willemsen J (1977). Population dynamics of percids in lake Ijssel and some smaller lakes in The Netherlands. Journal of Fisheries Research Board of Canada 34: 1710-1719.
  • Winemiller KO, Akin S, Zeug SC (2007). Production sources and food web structure of a temperate tidal estuary: integration of dietary and stable izotope Data. Marine Ecology Progress Series 343: 63-76.
  • Winemiller KO, Hoeinghaus D, Pease AA, Esselman PC, Honeycutt RL et al. (2010). Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a mesoamerican coastal river. River Research and Applictions. doi: 10.10002/rra.1396
  • Yağcı A, Apaydın Yağcı M, Bilgin F, Erbatur İ (2016). The effects of physicochemical parameters on fish distribution in Eğirdir Lake, Turkey. Iranian Journal of Fisheries Sciences 15 (2): 846- 857
  • Yarar M, Magnin G (1997) Türkiye’nin önemli kuş alanları. Doğal Hayatı Koruma Derneği. 313 p (in Turkish).
  • Yerli SV, Alp A, Yeğen V, Uysal R, Apaydın Yağcı M (2013). Evaluation of the ecological and economical results of the introduced alien fish species in Lake Eğirdir, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 13: 795-809. doi: 10.4194/1303- 2712-v13_5_03
  • Yodzis P (1984). The structure of assembled communities. II. Journal of Theoretical Biology 107: 115-126.
  • Zainordin AF, Ab Hamid S (2017). Determination of trophic structure in selected freshwater ecosystems by using stable isotope analysis. Tropical Life Sciences Research 28 (2): 9-29. doi: 10.21315/tlsr2017.28.2.2