Proliferation effects of phenylboronic acid and boric acid on canine peripheral blood mononuclear cells

Proliferation effects of phenylboronic acid and boric acid on canine peripheral blood mononuclear cells

The effects of phenylboronic acid (PBA) and boric acid (BA) on the proliferation of canine peripheral blood mononuclearcells (PBMCs) were investigated. Treatment of PBMCs from mixed breed dogs with PBA or BA (0.05 μg/mL) alone elicited blastogenicresponses of 0.478 ± 0.438 and 0.499 ± 0.366, respectively. We observed an additive effect on proliferation when purebred Kangal PBMCswere cultured in a combination of BA (0.001 μg/mL) and the mitogenic lectin concanavalin A (1 μg/mL). However, the effects were notstatistically significant. We detected varied IL-2 and IL-4 secretion in response to stimulation with boron-containing compounds. Ourfindings suggest that PBA induces canine PBMC proliferation, albeit less potently than lectins. However, boronic acid compounds maystill prove beneficial as adjuvants to elicit cell proliferation and boost canine immune responses.

___

  • 1. Dubois B, Peumans WJ, Van Damme EJS, Van Damme J, Opdenakker G. Regulation of gelatinase B (MMP-9) in leukocytes by plant lectins. FEBS Lett 1998; 427: 275-278.
  • 2. Kulkarni GV, Lee W, Seth A, Mc Culloch CAG. Role of mitochondrial membrane potential in concanavalin A-induced apoptosis in human fibroblasts. Exp Cell Res 1998; 245: 170- 178.
  • 3. Leist M, Wendel A. A novel mechanism of murine hepatocytes death inducible by concanavalin A. J Hepatol 1996; 25: 948- 959.
  • 4. Uchimura E, Otsuka H, Okano H, Sakurai Y, Kataoka K. Totally synthetic polymer with lectin-like function: Induction of killer cells by the copolymer of 3-acrylamidophenylboronic acid with N,N-dimethylacrylamide. Biotech Bioeng 2001; 72: 307-314.
  • 5. Kabu M, Akosman S. Biological effects of boron. In: Whitacre DM, editors. Reviews of Environmental Contamination and Toxicology. Springer, New York; 2013. pp. 57-75.
  • 6. Kurtoglu V, Kurtoglu F, Coskun B. Effect of boron supplementation of adequate and inadeqate vitamin D3- containing diet on performance and serum biochemical characters of broiler chickens. Res Vet Sci 2001; 71: 183-187.
  • 7. Sayin Z, Ucan US, Sakmanoglu A. Antibacterial and antibiofilm effects of boron on different bacteria. Biol Trace Elem Res 2016; 173: 241-246.
  • 8. Trippier PC, McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. Med Chem Comm 2010; 1: 183-198.
  • 9. Yılmaz MT. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J Med Sci 2012; 42: 1423-1429.
  • 10. Fry RS, Lloyd KE, Jacobi SK, Siciliano PD, Robarge WP, Spears JW. Effect of dietary boron on immune function in growing beef steers. J Anim Physiol Anim Nutr 2010; 94: 273-279.
  • 11. Armstrong TA, Spears JW. Effect of boron supplementation of pig diets on the production of tumor necrosis factor-α and interferon-γ. J Anim Sci 2003; 81: 2552-2561.
  • 12. Benderdour M, Hess K, Gadet MD, Dousset B, Nabet P, Belleville F. Effect of boric acid solution on cartilage metabolism. Biochem Biophys Res Commun 1997; 234: 263- 268.
  • 13. Benderdour M, Hess K, Dzondo-Gadet M, Nabet P, Belleville F, Dousset B. Boron modulates extracellular matrix and TNFα synthesis in human Fibroblasts. Biochem Biophys Res Commun 1998; 246: 746-751.
  • 14. Pongsave M. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes. J Occup Med Toxicol 2009; 4: 27-33.
  • 15. Miyazaki H, Kikuchi A, Koyama Y, Okano T, Sakurai Y, Kataoka K. Boronate-containing polymer as novel mitogen. Biochem Biophys Res Commun 1993; 195: 829-836.
  • 16. Otsuka H, Ikeya T, Okano T, Katoka K. Activation of lymphocyte proliferation by boronate-containing polymer immobilised on substrate: the effect of boron content on lymphocyte proliferation. Eur Cell Mater 2006; 12: 36-43.
  • 17. Ogando DG, Jalimarada SS, Liu C, Bonanno JA. Effect of boric acid on cell proliferation and reactive oxygen species production. Invest Ophth Vis Sci 2011; 52: 6455.
  • 18. Wagner U, Burkhardt E, Failing K. Evaluation of canine lymphocyte proliferation: comparison of three different colorimetric methods with the 3H-thymidine incorporation assay. Vet Immunol Immunopathol 1999; 70: 150-159.
  • 19. Ucan US, Stokes CR, Bailey, M. Production of cytokines by CD4+ T cells from the intestinal lamina propria. Veterinarium 2001; 12: 13-17.
  • 20. Bolanos L, Lukaszewski K, Bonilla I, Blevins D. Why boron? Plant Physiol Biochem 2004; 42: 907-912.
  • 21. Korkmaz M, Yenigün M, Bakırdere S, Ataman OY, Keskin S, Müezzinoğlu T, Lekili M. Effects of chronic boron exposure on semen profile. Biol Trace Elem Res 2011; 143: 738-750.
  • 22. Kabu M, Uyarlar C, Zarczynska K, Milewska W, Sobiech P. The role of boron in animal health. J Elem 2015; 520: 535-541.
  • 23. O’Hara DT. New generation vaccine adjuvants. In: Encyclopedia of Life Sciences. London, UK: John Wiley & Sons; 2007. doi: 10.1002/9780470015902.a0020177.pub2
  • 24. Erdogan M, Tepeli C, Brenig B, Dosay Akbulut M, Uğuz C, Savolainen P, Özbeyaz C. Genetic variability among native dog breeds in Turkey. Turk J Biol 2013; 37: 176-183.
  • 25. Valli JL, Williamson A, Sharif S, Rice J, Shewen PE. In vitro cytokine responses of peripheral blood mononuclear cells from healthy dogs to distemper virus, Malassezia and Toxocara. Vet Immunol Immunopathol 2010; 134: 218-229.