Phylogenetic analyses of P32, RPO30, GPCR, ORF117, and Kelch-like genes of Tunisian sheeppox virus isolates

Phylogenetic analyses of P32, RPO30, GPCR, ORF117, and Kelch-like genes of Tunisian sheeppox virus isolates

Sheeppox is an economically important disease of small ruminants caused by the sheeppox virus (SPPV). Sheeppoxvirus (SPPV), goatpox virus, and lumpy skin disease virus are capripoxviruses, antigenically related but genetically distinct. Theirdifferentiation requires analysis at a molecular level. Eleven sheeppox virus isolates from five different regions of Tunisia were collectedbetween 2010 and 2016. SPPV was detected by real-time PCR using SYBR Green technology. Primers amplifying the entire Kelch-likegene were designed. Then the GPCR, RPO30, P32, ORF117, and Kelch-like genes were molecularly analyzed to show the different specificlineage patterns of each species. Phylogenetic analyses revealed three monophyletic and distinct specific lineage clusters as per their hostorigins. Our study proved the efficiency of using these five genes for the identification and differentiation of capripoxvirus species, andthe GPCR gene is recommended for phylogenetic studies.

___

  • 1. Tuppurainen ESM, Venter EH, Shisler JL, Gari G, Mekonnen GA et al. Review: Capripoxvirus diseases: current status and opportunities for control. Transboundary and Emerging Diseases 2017; 64: 729-745.
  • 2. Ben Chehida F, Ayari-Fakhfakh E, Caufour P, Amdouni J, Nasr J et al. Sheep pox in Tunisia: current status and perspectives. Transboundary and Emerging Diseases 2018; 65: 50-63.
  • 3. Abu-El-Saad AA, Abdel-Moneim AS. Modulation of macrophage functions by sheeppox virus provides clues to understand interaction of the virus with host immune system. Virology Journal 2005; 2: 22.
  • 4. Diallo A, Viljoen GJ. Genus Capripoxvirus. In: Mercer A, Schmidt. A, Weber O (editors). Poxviruses. Basel, Switzerland: Birkhäuser; 2007. pp. 167-181.
  • 5. Santhamani R, Yogisharadhya R, Venkatesan G, Shivachandra SB, Pandey AB et al. Molecular characterization of Indian sheeppox and goatpox viruses based on RPO30 and GPCR genes. Virus Genes 2014; 49: 286-291.
  • 6. Tuppurainen ES, Pearson CR, Bachanek-Bankowska K, Knowles NJ, Amareen S et al. Characterization of sheep pox virus vaccine for cattle against lumpy skin disease virus. Antiviral Research 2014; 109: 1-6.
  • 7. Pfeffer M, Meyer H. Poxvirus Diagnostics. In: Poxviruses. Basel, Switzerland: Birkhäuser; 2007. pp. 355-373.
  • 8. Kitching RP. Vaccines for lumpy skin disease, sheep pox and goatpox. Developmental Biology 2003; 114: 161-167.
  • 9. Heine HG, Stevens MP, Foord AJ, Boyle DB. A capripox virus detection PCR and antibody ELISA based on the major antigen P32 the homolog of the vaccinia virus H3L gene. Journal of Immunological Methods 1999; 227: 187-196.
  • 10. Hosamani M, Mondal B, Tembhurne PA, Bandyopadhyay SK, Singh RK et al. Differentiation of sheep pox and goatpox viruses by sequence analysis and PCR-RFLP of P32 gene. Virus Genes 2004; 29: 73-80.
  • 11. Zro K, Zakham F, Melloul M, Fahime E, Ennaji MM. A sheeppox outbreak in Morocco: isolation and identification of virus responsible for the new clinical form of disease. BMC Veterinary Research 2014; 27: 10-31.
  • 12. Maksyutov RA, Gavrilova EV, Agafonov AP, Taranov OS, Glotov AG et al. An outbreak of sheep pox in Zabajkalskij kray of Russia. Transboundary and Emerging Diseases 2015; 62: 453-456.
  • 13. Dashprakash M, Venkatesan G, Ramakrishnan MA, Muthuchelvan D, Sankar M et al. Genetic diversity of fusion gene (ORF 117), an analogue of vaccinia virus A27L gene of capripox virus isolates. Virus Genes 2015; 50: 325-328.
  • 14. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. American Journal of Hygiene 1938; 27: 493-497.
  • 15. Tian H, Wu J, Chen Y, Zhang K, Shang Y et al. Development of a SYBR Green real-time PCR method for rapid detection of sheep pox virus. Virology Journal 2012; 27: 291.
  • 16. Zhou T, Jia H, Chen G, He X, Fang Y et al. Phylogenetic analysis of Chinese sheeppox and goatpox virus isolates. Virology Journal 2012; 9: 25.
  • 17. Fakhfakh E, Le Goff C, Albina E, Zekri S, Sghaier C et al. Isolement et étude moléculaire de souches des virus de la clavelée et de l’ecthyma contagieux en Tunisie. Revue d’élevage et de médecine vétérinaire des pays tropicaux 2005; 58: 7-14 (in French).
  • 18. Balinsky CA, Delhon G, Afonso CL, Risatti GR, Borca MV et al. Sheeppox virus Kelch-like gene SPPV-019 affects virus virulence. Journal of Virology 2007; 81: 11392-11401.
  • 19. Shchelkunov S, Totmenin A, Kolosova I. Species-specific differences in organization of orthopoxvirus Kelch-like proteins. Virus Genes 2002; 24: 157-162.
  • 20. Zhu XL, Yang F, Li HX, Dou YX, Meng XL et al. Identification and phylogenetic analysis of a sheep pox virus isolated from the Ningxia Hui Autonomous Region of China. Genetics and Molecular Research 2013; 12: 1670-1678.
  • 21. Venkatesan G, Balamurugan V, Yogisharadhya R, Kumar A, Bhanuprakash V. Differentiation of sheeppox and goatpox viruses by polymerase chain reaction-restriction fragment length polymorphism. Virologica Sinica 2012; 27: 353-359.
  • 22. Le Goff C, Lamien CE, Fakhfakh E, Chadeyras A, Aba-Adulugba E et al. Capripoxvirus G-protein-coupled chemokine receptor: a host-range gene suitable for virus animal origin discrimination. Journal of General Virology 2009; 90: 1967-1977.
  • 23. Stram Y, Kuznetzova L, Friedgut O, Gelman B, Yadin H et al. The use of lumpy skin disease virus genome termini for detection and phylogenetic analysis. Journal of Virological Methods 2008; 151: 225-229.
  • 24. Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH et al. The genomes of sheeppox and goatpox viruses. Journal of Virology 2002; 76: 6054-6061.
  • 25. Le Goff C, Fakhfakh E, Chadeyras A, Adulugba EA, Libeau G et al. Host-range phylogenetic grouping of capripoxviruses. In: Makkar HP, Viljoen GJ (editors). Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries. Berlin, Germany: Springer; 2005. pp. 727-733.