In vitro gas production and fatty acids biohydrogenation of diets containing different unsaturated fatty acids sources plus crude glycerin

In vitro gas production and fatty acids biohydrogenation of diets containing different unsaturated fatty acids sources plus crude glycerin

An in vitro trial was conducted to evaluate the effects of different unsaturated fatty acids (UFA) sources plus crude glycerin (CGL) on gas production and rumen biohydrogenation (RBH). Incubated diet corresponded to diets containing corn silage (30%) and concentrate (70%) composed of corn, urea, mineral salts, CGL, and different UFA sources as follows: no additional fat (NAF), rumen protected fat (RPF), soybean oil, linoleic acid (LA) or alpha-linolenic acid (LN). Methane concentrations in LA and LN were lower compared to NAF (p < 0.001), but when CH4 was expressed as a proportion of total gas, NAF and RPF showed the greatest values among evaluated UFA sources (p = 0.001). 18:1 t11 concentration showed a faster increase from 0 to 1 h and a slower decrease from 1 to 36 h of incubation, irrespective of UFA source. A higher C18:1 t11 production rate was observed from 1 h to 5 h of incubation, where LA and LN have higher values compared to NAF and RPF diets (p < 0.001). Diets with a high content of LA may be efficient as a nutritional approach to reduce methane production and RBH, resulting in positive effects on vaccenic acid concentrations.

___

  • 1. Shokryzadan P, Ali Rajion M, Meng GY, Boo LJ, Ebrahimi M et al. Conjugated linoleic acid: a potent fatty acid linked to animal and human health. Critical Reviews in Food Science and Nutrition 2017; 57: 2737-2748. doi:10.1080/10408398.201 5.1060190
  • 2. Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS et al. The role of delta(9)-desaturase in the production of cis-9, trans-11 CLA. The Journal of Nutritional Biochemistry 2001; 12: 622-630. doi:10.1016/S0955-2863(01)00180-2
  • 3. Piperova LS, Sampugna J, Teter BB, Kalscheur KF, Yurawecz MP et al. Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis9-containing CLA in lactating dairy cows. The Journal of Nutrition 2002; 132: 1235-1241. doi: 10.1093/jn/132.6.1235
  • 4. Buccioni A, Decandia M, Minieri S, Molle G, Cabiddu A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Animal Feed Science and Technology 2012; 174: 1-25. doi:10.1016/j.anifeedsci.2012.02.009
  • 5. Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie 2017; 141: 107-120. doi:10.1016/j.biochi.2017.08.006
  • 6. Vargas JAC, Olivera AM, Ribeiro CVDM, Daza CEE. In vitro rumen biohydrogenation kinetics of mixed linoleic and alfalinolenic acid. Revista Colombiana de Ciencias Pecuarias 2018; 31 (1): 213-222. doi:10.17533/udea.rccp.v31n3a06
  • 7. Gomez-Insuasti AS, Granja-Salcedo YT, Castagnino PS, Vieira BR, Melheiros E et al. The effect of lipid sources on intake, rumen fermentation parameters and microbial protein synthesis in Nellore steers supplemented with glycerol. Animal Production Science 2014; 54 (10): 1871-1876. doi:10.1071/AN14394
  • 8. Granja-Salcedo YT, Messana JD, Souza VC, Dias LAV, Kishi LT et al. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. British Journal of Nutrition 2017; 118: 651-660. doi:10.1017/S0007114517002689
  • 9. Gomez-Insuasti AS, Granja-Salcedo YT, Rossi LG, Vieira BR, Berchielli TT. Effect of soybean oil availabilities on rumen biohydrogenation and duodenal flow of fatty acids in beef cattle fed a diet with crude glycerine. Archives of Animal Nutrition 2018; 72:4, 308-320. doi:10.1080/1745039X.2018.1492805
  • 10. Granja-Salcedo YT, Souza VC, Dias LAV, Gomez-Insuasti AS, Messana JD et al. Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Animal Feed Science and Technology 2017; 225: 195-204. doi:10.1016/j.anifeedsci.2017.01.021
  • 11. Castagnino PS, Messana JD, Fiorentini G, Jesus RB, San Vito E et al. Glycerol combined with oils did not limit biohydrogenation of unsaturated fatty acid but reduced methane production in vitro. Animal Feed Science and Technology 2015; 201: 14-24. doi:10.1016/j.anifeedsci.2014.12.004
  • 12. Krueger NA, Anderson RC, Tedeschi LO, Callaway TR, Edrington TS et al. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro. Bioresource Technology 2010; 101: 8469- 8472. doi:10.1016/j.biortech.2010.06.010
  • 13. Edwards HD, Anderson RC, Miller RK, Taylor TM, Hardin MD et al. Glycerol inhibition of ruminal lipolysis in vitro. Journal of Dairy Science 2012; 95: 5176-5181.
  • 14. AOAC. Official Methods of Analysis, 18th ed. Arlington, VA, USA: Association of Official Analytical Chemists; 2006.
  • 15. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 1991; 74 (10): 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2
  • 16. Goering HK, Van Soest PJ. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). Agricultural Handbook No. 379. Washington, DC, USA: US Government Printing Office; 1970.
  • 17. Laverroux S, Glasser F, Gillet M, Joly C, Doreau M. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes. Lipids 2011; 46 (9): 843-850. doi:10.1007/s11745-011-3584-7
  • 18. Theodorou MK, Williams BA, Dhanoa MS, Mcallan AB, France J. A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 1994; 48 (3-4): 185-197.doi: 10.1016/0377-8401(94)90171-6
  • 19. Mauricio RM, Mould FL, Dhanoa MS, Owen E, Channa KS et al. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology 1999; 79 (4): 321-330. doi:10.1016/S0377- 8401(99)00033-4
  • 20. Palmquist DL, Jenkins TC. Challenges with fats and fatty acid methods. Journal of Animal Science 2003; 81 (12): 3250-3264. doi:10.2527/2003.81123250x
  • 21. Troegeler-Meynadier A, Bret-Bennis L, Enjalbert J. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Reproduction Nutrition Development 2006; 46: 713-724. doi:10.1051/rnd:2006046
  • 22. Czerkawski JW, Blaxter KL, Wainman FW. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. British Journal of Nutrition 1966; 20: 349–362. doi:10.1079/BJN19660035
  • 23. Bayat AR, Kairenius P, Stefański T, Leskinen H, Comtet-Marre S et al. Effect of camelina oil or live yeasts (saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Journal of Dairy Science 2015; 98 (5): 3166-3181. doi:10.3168/jds.2014-7976
  • 24. Johnson K., Johnson DE. Methane emissions from cattle. Journal of Animal Science 1995; 73: 2483-2492. doi: 10.2527/1995.7382483x
  • 25. Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogenutilizing bacteria for mitigation. Science of The Total Environment 2019; 654: 1270-1283. doi:10.1016/j. scitotenv.2018.11.180
  • 26. Palmquist DL,JenkinsTC. Fat in Lactation Rations 1, 2: Review. Journal of Dairy Science 1980; 63 (1): 1-14. doi:10.3168/jds. S0022-0302(80)82881-5
  • 27. Kay JK, Mackle TR, Auldist MJ, Thomson NA, Bauman DE. Endogenous Synthesis of cis-9, trans-11 Conjugated linoleic Acid in Dairy Cows Fed Fresh Pasture. Journal of Dairy Science 2004; 87 (2): 369-378. doi:10.3168/jds.S0022-0302(04)73176-8
  • 28. Hartigh LJD. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11 (2): 370. doi:10.3390/nu11020370
  • 29. Harvatine KJ, Allen MS. Fat supplements affect fractional rates of ruminal fatty acid biohydrogenation and passage in dairy cows. The Journal of Nutrition 2006; 136: 677-685. doi:10.1093/ jn/136.3.677
  • 30. Ribeiro CVDM, Eastridge ML, Firkins JL, St-Pierre NR, Palmquist DL. Kinetics of fatty acid biohydrogenation in vitro. Journal of Dairy Science 2007; 90 (3): 1405-1416. doi:10.3168/ jds.S0022-0302(07)71626-0
  • 31. Kepler CR, Tove SB. Biohydrogenation of unsaturated fatty acids. 3. Purification and properties of a linoleate delta-12-cis, delta-11-trans-isomerase from Butyrivibrio fibrisolvens. The Journal of Biological Chemistry 1967; 242 (24): 5686-5692.
  • 32. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board-Invited Review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science 2008; 86 (2): 397-412. doi: 10.2527/jas.2007- 0588
  • 33. Hawke JC. Chemistry and biochemistry of herbage. in: Butler GW, Bailey RW (editors). Lipids. London, UK: Academic Press; 1973. pp.213-263.
  • 34. Dawson RM, Hemington N. Digestion of grass lipids and pigments in the sheep rumen. British Journal of Nutrition 1974; 32 (2): 327-340. doi:10.1079/BJN19740086
  • 35. Harfoot CG, Hazlewood GP. 1997. Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (editors). The rumen microbial ecosystem. London UK: Blackie Academic and Professional Press; pp. 382-419.
  • 36. Getachew G., DePeters EJ, Robinson PH, Taylor SJ. In vitro rumen fermentation and gas production: influence of yellow grease, tallow, corn oil and their potassium soaps. Animal Feed Science and Technology 2001; 93 (1-2): 1-15. doi:10.1016/ S0377-8401(01)00264-4
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The relation of fat tissue hormones and some galactopoietic hormones with milk yield in Holstein and Simmental cows

Zennure DEMİR, Devrim SARIPINAR AKSU

Characterization and relationship between bulk tank milk composition and compost bedded variables from dairy barns in Rio Grande do Sul state, Brazil

Karise Fernanda NOGARA, Marcos BUSANELLO, Ione Maria Pereira HAYGERT-VELHO, Paulo Sergio Gois ALMEIDA, Karen Dal Magro FRIGERI, Maity ZOPOLLATTO

Quality and fertility of extended boar semen after prolonged transport

Tomislav BARNA, Aleksandar MAŠIĆ, Miloš PAVLOVIĆ, Nevena MAKSIMOVIĆ, Marina LAZAREVIĆ, Jelena APIĆ, Aleksandar MILOVANOVIĆ

In vitro investigation on extracellular traps formation of cat polymorphonuclear leucocytes against Toxoplasma gondii

Kader YILDIZ, Ayşe ŞİMŞEK, Neslihan SÜRSAL ŞİMŞEK

Effect of buck existence on some reproductive hormone levels during premating in Akkeçi goats

Fatin CEDDEN, Erkan PEHLİVAN, Ali ŞENOK

Evaluation of CYP19 as a candidate gene for milk production traits in native cattle and buffalo populations of Southern India

Sudhakar KROVVIDI, Vinoo REGULA, Thiruvenkadan Kannan ARANGANOOR, Saravanan RAMASAMY, Jeyakumar MANI, Muralidhar METTA

Effects of age at feedlot entry on performance, carcass characteristics, and beef quality traits of Holstein Friesian bulls reared in high altitude of Eastern Turkey

Veysel Fatih ÖZDEMİR, Mete YANAR

Determination of mucopolysaccharidosis IIID in some goat breeds

Orhan KAVUNCU, Yasemin GEDİK

Comparative efficiency of five mathematical functions in modelling the first lactation milk yield of Kankrej cattle

Thiruvothur Venkatesan RAJA, Satish Kumar RATHEE, Bharat Singh RATHOD, Harshad PANCHASARA, Achintya Kumar DAS, Umesh SINGH, Sushil KUMAR

Single nucleotide polymorphisms of GDF9 gene/exon 2 region and their associations with milk yield and milk content traits in Karakaş and Norduz sheep breeds

Ayhan YILMAZ, Kadir KARAKUŞ, Selahaddin KİRAZ, Abdullah YEŞİLOVA, Seyrani KONCAGÜL, Hasan KOYUN, Serhat KARACA, Turgut AYGÜN