In ovo feeding technology: embryonic development, hatchability and hatching quality of broiler chicks

In ovo feeding technology: embryonic development, hatchability and hatching quality of broiler chicks

This paper reviewed the effects of in ovo feeding application on incubation performance and chick quality in broilers. Effectiveness of incubation and chick quality in commercial chicken broiler production have a decisive role in production cost as well as efficiency and are a prerequisite for sustainable production. To date, several studies have been done to improve incubation performance and chick quality, and significant gains have been achieved in this area in the last fifty years. The average hatchability and survivability in the sector have reached 85%–90% and 90%–95% respectively, and with new research, theoretical limits have been closely approached. In ovo feeding, one of the newest and technical applications in the incubation sector which successfully implements different methods and technologies in the area of performance and quality improvement has not yet been commercialized. Although in ovo feeding effects on chick weight and hatch properties have been evaluated and scientifically positive in some researches, sufficient progress for the spread of the application in the field has not been registered. Therefore, it is useful to continue studies on this subject, testing two or three interactions together with other supportive applications, and to investigate possible synergistic effects.

___

  • 1. Organisation for Economic Co-operation and Development and the Food and Agriculture Organization, OECD-FAO Agricultural Outlook 2018-2027. Paris, PAR, France: OECD Publishing/ Rome, RM, Italy: FAO; 2018. doi: 10.1787/agr_ outlook-2018-en
  • 2. Organisation for Economic Co-operation and Development and the Food and Agriculture Organization, OECD-FAO Agricultural Outlook 2020-2029. Paris, PAR, France: OECD Publishing/ Rome, RM, Italy: FAO; 2020. doi: 10.1787/1112c23b-en
  • 3. Kucharska-Gaca J, Kowalska E, Dębowska M. In ovo feeding– technology of the future–a review. Annals of Animal Science 2017; 17 (4): 979-992. doi: 10.1515/aoas-2017-0004
  • 4. Saeed M, Babazadeh D, Naveed M, Alagawany M, Abd El-Hack ME et al. In ovo delivery of various biological supplements, vaccines and drugs in chicken broiler: current knowledge. Journal of the Science of Food and Agriculture 2019; 99 (8): 3727-3739. doi: 10.1002/jsfa.9593
  • 5. Hou T, Tako E. The in ovo feeding administration (Gallus gallus)—An emerging in vivo approach to assess bioactive compounds with potential nutritional benefits. Nutrients 2018; 10 (4): 418. doi: 10.3390/nu10040418
  • 6. Uni Z, Ferket PR. Enhancement of development of oviparous species by in ovo feeding. US 6,592,878. Washington, DC, USA: United States patent; 2003.
  • 7. Dunislawska A, Slawinska A, Stadnicka K, Bednarczyk M, Gulewicz P et al. Synbiotics for broiler chickens—in vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PLoS One 2017; 12 (1): e0168587. doi: 10.1371/journal.pone.0168587
  • 8. Madej JP, Skonieczna J, Siwek M, Kowalczyk A, Łukaszewicz E et al. Genotype-dependent development of cellular and humoral immunity in spleen and cecal tonsils of chickens stimulated in ovo with bioactive compounds. Poultry Science 2020; 99 (9): 4343-4350. doi: 10.1016/j.psj.2020.05.048
  • 9. Wang J, Lin J, Wang J, Wu S, Qi G et al. Effects of in ovo feeding of N-acetyl-L-glutamate on early intestinal development and growth performance in broiler chicken. Poultry Science 2020; 99 (7): 3583-3593. doi: 10.1016/j.psj.2020.04.003
  • 10. Johnston PA, Liu H, O’Connell T, Phelps P, Bland M et al. Applications in in ovo technology. Poultry Science 1997; 76 (1): 165-178. doi: 10.1093/ps/76.1.165
  • 11. Peebles ED. In ovo applications in chicken broiler: a review. Poultry Science 2018; 97 (7): 2322-2338. doi: 10.3382/ps/ pey081
  • 12. Schädler J, Sigrist B, Meier SM, Albini S, Wolfrum N. Viruslike particles in a new vaccination approach against infectious laryngotracheitis. Journal of General Virology 2019; 100 (6): 1013-1026. doi: 10.1099/jgv.0.001272
  • 13. Dobner M, Auerbach M, Mundt E, Preisinger R, Icken W et al. Immune responses upon in ovo HVT-IBD vaccination vary between different chicken lines. Developmental & Comparative Immunology 2019; 100: 103422. doi: 10.1016/j. dci.2019.103422
  • 14. Fan S, Wu Y, Wang H, Shang Y, Luo Q et al. In-ovo Newcastle disease virus vaccine strain TS09-C protects commercial chickens against Newcastle disease in the presence of maternally derived antibodies. Poultry Science 2020; 99 (5): 2438-2443. doi: 10.1016/j.psj.2020.01.006
  • 15. Sharma JM, Burmester BR. Disease control in avian species by embryonal vaccination. US 4,458,630. Washington, DC, USA: United States patent; 1984
  • 16. Jha R, Singh AK, Yadav S, Berrocoso JF, Mishra B. Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of chicken broiler. Frontiers in Veterinary Science 2019; 6: 82. doi: 10.3389/fvets.2019.00082
  • 17. Subramaniyan SA, Kang DR, Park JR, Siddiqui SH, Ravichandiran P et al. Effect of in ovo Injection of L-Arginine in different chicken embryonic development stages on posthatchability, immune response, and Myo-D and Myogenin Proteins. Animals 2019; 9 (6): 357. doi: 10.3390/ani9060357
  • 18. Ma YB, Zhang FD, Wang J, Wu SG, Qi GH et al. Effect of in ovo feeding of β-hydroxy-β-methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers. Journal of the Science of Food and Agriculture 2020; 100 (2): 755-763. doi: 10.1002/jsfa.10080
  • 19. Williams CJ. Automated in ovo injection apparatus. US 6,286,455. Washington, DC, USA: United States patent; 2001.
  • 20. Roto SM, Kwon YM, Ricke SC. Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in chicken broiler. Frontiers in Veterinary Science 2016; 3: 63. doi: 10.3389/fvets.2016.00063
  • 21. Siwek M, Slawinska A, Stadnicka K, Bogucka J, Dunislawska A et al. Prebiotics and synbiotics–in ovo delivery for improved lifespan condition in chicken. BMC Veterinary Research 2018; 14 (1): 402. doi: 10.1186/s12917-018-1738-z
  • 22. Stadnicka K, Bogucka J, Stanek M, Graczyk R, Krajewski K et al. Injection of raffinose family oligosaccharides at 12 days of egg incubation modulates the gut development and resistance to opportunistic pathogens in broiler chickens. Animals 2020; 10 (4): 592. doi: 10.3390/ani10040592
  • 23. Dunislawska A, Siwek M, Slawinska A, Lepczynski A, Herosimczyk A et al. Metabolic gene expression in the muscle and blood parameters of broiler chickens stimulated in ovo with synbiotics. Animals 2020; 10 (4): 687. doi: 10.3390/ ani10040687
  • 24. Pietrzak E, Dunislawska A, Siwek M, Zampiga M, Sirri F et al. Splenic gene expression signatures in slow-growing chickens stimulated in ovo with galactooligosaccharides and challenged with heat. Animals 2020; 10 (3): 474. doi: 10.3390/ani10030474
  • 25. Xie WY, Chen MJ, Jiang SG, Yan HC, Wang XQ et al. The Wnt/β-catenin signaling pathway is involved in regulating feather growth of embryonic chicks. Poultry Science 2020; 99 (5): 2315-2323. doi: 10.1016/j.psj.2020.01.002
  • 26. Kop Bozbay C, Konanç K, Ocak N, Öztürk E. The effects of in ovo injection of propolis and injection site on hatchability, hatching weight and survival of chicks. Türkiye Tarımsal Araștırmalar Dergisi 2016; 3 (1): 48-54 (in Turkish).
  • 27. Williams C. In ovo vaccination for disease prevention. International Poultry Production 2007; 15 (8): 7-9.
  • 28. Fatemi SA, Elliott KE, Bello A, Durojaye OA, Zhang H et al. Effects of source and level of in ovo-injected vitamin D3 on the hatchability and serum 25-hydroxycholecalciferol concentrations of Ross 708 broilers. Poultry Science 2020; 99 (8): 3877-3884. doi: 10.1016/j.psj.2020.04.030
  • 29. Dal Pont GC, Goes EC, Araujo RA, Oliveira SG, Rocha C et al. Glycerol inoculation in eggs of young broiler breeders at different embryonic periods. Poultry Science 2019; 98 (9): 3989-3993. doi: 0.3382/ps/pez141
  • 30. Neves DG, Retes PL, Alves VV, Pereira RS, Bueno YD et al. In ovo injection with glycerol and insulin-like growth factor (IGF-I): hatchability, intestinal morphometry, performance, and carcass characteristics of broilers. Archives of Animal Nutrition 2020; 1-8. doi: 10.1080/1745039X.2020.1747377
  • 31. Bednarczyk M, Stadnicka K, Kozłowska I, Abiuso C, Tavaniello S et al. Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal 2016; 10 (8): 1271-1279. doi: 10.1017/S1751731116000173
  • 32. Dunislawska A, Slawinska A, Bednarczyk M, Siwek M. Transcriptome modulation by in ovo delivered Lactobacillus synbiotics in a range of chicken tissues. Gene 2019; 698: 27-33. doi: 10.1016/j.gene.2019.02.068
  • 33. Bertocchi M, Zampiga M, Luise D, Vitali M, Sirri F et al. In ovo injection of a galacto-oligosaccharide prebiotic in broiler chickens submitted to heat-stress: impact on transcriptomic profile and plasma immune parameters. Animals 2019; 9 (12): 1067. doi: 10.3390/ani9121067
  • 34. Slawinska A, Plowiec A, Siwek M, Jaroszewski M, Bednarczyk M. Long-term transcriptomic effects of prebiotics and synbiotics delivered in ovo in broiler chickens. PLoS One 2016; 11 (12): e0168899. doi: 10.1371/journal.pone.0168899
  • 35. Dunislawska A, Slawinska A, Siwek M. Hepatic DNA methylation in response to early stimulation of microbiota with Lactobacillus synbiotics in broiler chickens. Genes 2020; 11 (5): 579. doi: 10.3390/genes11050579
  • 36. Al-Shamery NJ, Al-Shuhaib MB. Effect of in-ovo injection of various nutrients on the hatchability, mortality ratio and weight of the broiler chickens. IOSR Journal of Agriculture and Veterinary Science 2015; 8 (2): 30-33. doi: 10.9790/2380- 08123033
  • 37. Uni Z, Ferket RP. Methods for early nutrition and their potential. World’s Poultry Science Journal 2004; 60 (1): 101- 111. doi: 10.1079/WPS20038
  • 38. Surai PF, Kochish II, Romanov MN, Griffin DK. Nutritional modulation of the antioxidant capacities in chicken broiler: the case of vitamin E. Poultry Science 2019; 98 (9): 4030-4041. doi. org/10.3382/ps/pez072
  • 39. Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant defence systems and oxidative stress in chicken broiler biology: an update. Antioxidants 2019; 8 (7): 235. doi: 10.3390/ antiox8070235
  • 40. Surai PF, Kochish II. Nutritional modulation of the antioxidant capacities in chicken broiler: the case of selenium. Poultry Science 2019; 98 (10): 4231-4239. doi: 10.3382/ps/pey406
  • 41. Surai PF, Fisinin VI, Karadas F. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition 2016; 2 (1): 1-11. doi: 10.1016/j. aninu.2016.01.00
  • 42. Yang J, Ding X, Bai S, Wang J, Zeng Q et al. Effects of maternal dietary vitamin E on the egg characteristics, hatchability and offspring quality of prolonged storage eggs of broiler breeder hens. Journal of Animal Physiology and Animal Nutrition 2020. doi: 10.1111/jpn.13371
  • 43. Meng T, Liu YL, Xie CY, Zhang B, Huang YQ et al. Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biological Trace Element Research 2019; 189 (2): 548- 555. doi: 10.1016/j.anifeedsci.2019.114369.
  • 44. Liu YJ, Zhao LH, Mosenthin R, Zhang JY, Ji C et al. Protective Effect of Vitamin E on laying performance, antioxidant capacity, and immunity in laying hens challenged with Salmonella Enteritidis. Poultry Science 2019; 98 (11): 5847- 5854. doi: 10.3382/ps/pez227
  • 45. Wang J, Clark DL, Jacobi SK, Velleman SG. Effect of vitamin E and omega-3 fatty acids early posthatch supplementation on reducing the severity of wooden breast myopathy in broilers. Poultry Science 2020; 99 (4): 2108-2119. doi: 10.1016/j. psj.2019.12.033
  • 46. Surai PF. Antioxidants in chicken broiler nutrition and reproduction: an update. Antioxidants 2020; 9 (2): 105. doi: 10.3390/antiox9020105
  • 47. Wilson JX, Jaworski EM. Effect of oxygen on ascorbic acid uptake and concentration in embryonic chick brain. Neurochemical Research 1992; 17 (6): 571-576.
  • 48. Zakaria AH, Al-Anezi MA. Effect of ascorbic acid and cooling during egg incubation on hatchability, culling, mortality, and the body weights of broiler chickens. Poultry Science 1996; 75 (10): 1204-1209. doi: 10.3382/ps.0751204
  • 49. Zhang H, Elliott KE, Durojaye OA, Fatemi SA, Peebles ED. Effects of in ovo administration of L-ascorbic acid on broiler hatchability and its influence on the effects of pre-placement holding time on broiler quality characteristics. Poultry Science 2018; 97 (6): 1941-1947. doi: 10.3382/ps/pey040
  • 50. Zhang H, Elliott KE, Durojaye OA, Fatemi SA, Schilling MW et al. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity, and meat quality in broiler chickens. Poultry Science 2019; 98 (9): 3617-3625. doi: 10.3382/ps/pez173
  • 51. Khaligh F, Hassanabadi A, Nassiri-Moghaddam H, Golian A, Kalidari GA. Effects of in ovo injection of chrysin, quercetin and ascorbic acid on hatchability, somatic attributes, hepatic oxidative status and early post-hatch performance of broiler chicks. Journal of Animal Physiology and Animal Nutrition 2018; 102 (1): e413-e420. doi: 10.1111/jpn.12760
  • 52. El-Senousey HK, Chen B, Wang JY, Atta AM, Mohamed FR et al. In ovo injection of ascorbic acid modulates antioxidant defense system and immune gene expression in newly hatched local Chinese yellow broiler chicks. Poultry Science 2018; 97 (2): 425-429. doi: 10.3382/ps/pex310
  • 53. Zhu YF, Li SZ, Sun QZ, Yang XJ. Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens. Animal 2019; 13 (9): 1927-1933. doi: 10.1017/ s175173111800353
  • 54. Zhu Y, Li S, Duan Y, Ren Z, Yang X et al. Effects of in ovo feeding of vitamin C on post-hatch performance, immune status and DNA methylation-related genes expression in broiler chickens. British Journal of Nutrition 2020; 1-27. doi: 10.1017/S000711452000210X
  • 55. Araújo IC, Café MB, Noleto RA, Martins JM, Ulhoa CJ et al. Effect of vitamin E in ovo feeding to broiler embryos on hatchability, chick quality, oxidative state, and performance. Poultry Science 2019; 98 (9): 3652-3661. doi: 10.3382/ps/ pey439
  • 56. Bhanja SK, Mandal AB, Majumdar S, Mehra M, Goel A. Effect of in ovo injection of vitamins on the chick weight and posthatch growth performance in broiler chickens. Indian Journal of Poultry Science 2012; 47 (3): 306-310.
  • 57. Salary J, Sahebi-Ala F, Kalantar M, Matin HRH. In ovo injection of vitamin E on post-hatch immunological parameters and broiler chicken performance. Asian Pacific Journal of Tropical Biomedicine 2014; (4): S616-S619. doi: 10.12980/ APJTB.4.2014APJTB-2014-0088
  • 58. Ebrahimi MR, Jafari Ahangari Y, Zamiri MJ, Akhlaghi A, Atashi H. Does preincubational in ovo injection of buffers or antioxidants improve the quality and hatchability in long-term stored eggs? Poultry Science 2012; 91 (11): 29702976. doi: 10.3382/ps.2012-02246
  • 59. Heidary M, Hassanabadi A, Mohebalian H. Effects of in ovo injection of nanocurcumin and vitamin E on antioxidant status, immune responses, intestinal morphology and growth performance of broiler chickens exposed to heat stress. Journal of Livestock Science and Technologies 2020; 8 (1): 17-27. doi: 10.22103/jlst.2020.15352.1310
  • 60. Rajkumar U, Vinoth A, Rajaravindra KS, Shanmugham M, Rao SV. Effect of in ovo inoculation of vitamin E on expression of Hsp-70 m RNA and juvenile growth in coloured broiler chicken. Indian Journal of Poultry Science 2015; 50 (1): 104- 108.
  • 61. Uni Z, Ferket PR, Tako E, Kedar O. In ovo feeding improves energy status of late-term chicken embryos. Poultry Science 2005; 84 (5): 764-770. doi: 10.1093/ps/84.5.764
  • 62. Zhai W, Rowe DE, Peebles ED. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poultry Science 2011; 90 (6): 1295-1301. doi: 10.3382/ps.2010-01130
  • 63. Salmanzadeh M. The effects of in-ovo injection of glucose on hatchability, hatching weight and subsequent performance of newly-hatched chicks. Brazilian journal of Poultry Science 2012; 14 (2): 137-140.
  • 64. Smirnov A, Tako E, Ferket PR, Uni Z. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in ovo feeding of carbohydrates. Poultry Science 2006; 85 (4): 669-673. doi: 10.1093/ps/85.4.669
  • 65. Zhang L, Zhu XD, Wang XF, Li JL, Gao F et al. Individual and combined effects of in-ovo injection of creatine monohydrate and glucose on somatic characteristics, energy status, and posthatch performance of broiler embryos and hatchlings. Poultry Science 2016; 95 (10): 2352-2359. doi: 10.3382/ps/ pew13
  • 66. Kanagaraju P, Rathnapraba S. Effect of in-ovo injection of glucose and egg white protein on the production performance and gut histomorphometry of broiler chicken. Indian Journal of Animal Research 2019; 53 (5): 675-679.
  • 67. Nazem MN, Amiri N, Tasharrofi S. Effect of in ovo feeding of amino acids and dextrose solutions on hatchability, body weight, intestinal development and liver glycogen reserves in newborn chicks. Veterinary Research Forum 2019; 10 (4): 323- 331. doi: 10.30466%2Fvrf.2018.69536.1956
  • 68. Ghanaatparast-Rashti M, Mottaghitalab M, Ahmadi H. In ovo feeding of nutrients and its impact on post-hatching water and feed deprivation up to 48 hr, energy status and jejunal morphology of chicks using response surface models. Journal of Animal Physiology and Animal Nutrition 2018; 102 (2): e806-e817. doi: 10.1111/jpn.12838
  • 69. Kop Bozbay C, Yılmaz B, Karabacak H, Düğme M, Atan H et al. Hatching weight and development of metabolically active organs of broiler chicks obtained from carbohydrate injectedeggs. Journal of Agriculture and Veterinary Science 2019; 12 (7): 41-46. doi: 10.9790/2380-1207014146
  • 70. Ohta Y, Tsushima N, Koide K, Kidd MT, Ishibashi T. Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks. Poultry Science 1999; 78 (11): 1493-1498. doi: 10.1093/ps/78.11.1493
  • 71. Kadam MM, Bhanja SK, Mandal AB, Thakur R, Vasan P et al. Effect of in ovo threonine supplementation on early growth, immunological responses and digestive enzyme activities in broiler chickens. British Poultry Science 2008; 49 (6): 736-741. doi: 10.1080/00071660802469333
  • 72. Ohta Y, Kidd MT. Optimum site for in ovo amino acid injection in broiler breeder eggs. Poultry Science 2001; 80 (10): 1425- 1429. doi: 10.1093/ps/80.10.1425
  • 73. Ohta Y, Kidd MT, Ishibashi T. Embryo growth and amino acid concentration profiles of broiler breeder eggs, embryos, and chicks after in ovo administration of amino acids. Poultry Science 2001; 80 (10): 1430-1436. doi: 10.1093/ps/78.11.1493
  • 74. Bhanja S 1, Mandal AB, Goswami TK. Effect of in ovo injection of amino acids on growth, immune response, development of digestive organs and carcass yields of broiler. Indian Journal of Poultry Science 2004; 39 (3): 212-218.
  • 75. Bhanja SK, Mandal AB. Effect of in ovo injection of critical amino acids on pre-and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens. AsianAustralasian Journal of Animal Sciences 2005; 18 (4): 524-531. doi: 10.5713/ajas.2005.524
  • 76. Shafey TM, Mahmoud AH, Alsobayel AA, Abouheif MA. Effects of in ovo administration of amino acids on hatchability and performance of meat chickens. South African Journal of Animal Science 2014; 44 (2): 123-130. doi: 10.4314/sajas. v44i2.4
  • 77. Gao T, Zhao M, Zhang L, Li J, Yu L et al. Effect of in ovo feeding of L-arginine on the hatchability, growth performance, gastrointestinal hormones, and jejunal digestive and absorptive capacity of posthatch broilers. Journal of Animal Science 2017; 95 (7): 3079-3092. doi: 10.2527/jas.2016.0465
  • 78. Yu LL, Gao T, Zhao MM, Lv PA, Zhang L et al. In ovo feeding of L-arginine alters energy metabolism in post-hatch broilers. Poultry Science 2018; 97 (1): 140-148. doi: 10.3382/ps/pex272
  • 79. Omidi S, Ebrahimi M, Janmohammadi H, Moghaddam G, Rajabi Z et al. The impact of in ovo injection of l-arginine on hatchability, immune system and caecum microflora of broiler chickens. Journal of Animal Physiology and Animal Nutrition 2020; 104 (1): 178-185. doi: 10.1111/jpn.13222
  • 80. Subramaniyan SA, Kang DR, Park JR, Siddiqui SH, Ravichandiran P et al. Effect of in ovo Injection of L-Arginine in different chicken embryonic development stages on posthatchability, immune response, and Myo-D and Myogenin Proteins. Animals 2019; 9 (6): 357. doi: 10.3390/ani9060357
  • 81. Ma YB, Zhang FD, Wang J, Wu SG, Qi GH et al. Effect of in ovo feeding of β-hydroxy-β-methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers. Journal of the Science of Food and Agriculture 2020; 100 (2): 755-763. doi: 10.1002/jsfa.10080
  • 82. Ebrahimi M, Janmohammadi H, Kia HD, Moghaddam G, Rajabi Z et al. The effect of L-lysine in ovo feeding on body weight characteristics and small intestine morphology in a day-old Ross broiler chicks. Revue de Medecine Veterinaire 2017; 168: 116-125.
  • 83. Salmanzadeh M, Ebrahimnezhad Y, Aghdam Shahryar H, Ghiasi Ghaleh-Kandi J. The effects of in ovo feeding of glutamine in broiler breeder eggs on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Archives Animal Breeding 2016; 59 (2): 235-42. doi: 10.5194/aab-59-235-2016
  • 84. Wang J, Lin J, Wang J, Wu S, Qi G et al. Effects of in ovo feeding of N-acetyl-L-glutamate on early intestinal development and growth performance in broiler chicken. Poultry Science 2020; 99 (7): 3583-3593. doi: 10.1016/j.psj.2020.04.003
  • 85. Kop Bozbay C, Akdağ A, Atan H, Ocak N. Hatchability, some hatchling parameters, quality score, survivability in newly hatched-broiler chicks receiving a β-alanine solution in ovo. Turkish Journal of Agriculture-Food Science and Technology 2018; 6 (10): 1469-73. doi: 10.24925/turjaf.v6i10.1469- 1473.2083
  • 86. Kop-Bozbay C, Ocak N. Growth, digestive tract and muscle weights in slow-growing broiler is not affected by a blend of branched-chain amino acids injected into different sites of egg. Journal of Agriculture and Environmental Sciences 2015; 4 (1): 261-269. doi: 10.15640/jaes.v4n1a32
  • 87. Julian RJ. Rapid growth problems: ascites and skeletal deformities in broilers. Poultry Science 1998; 77 (12): 1773- 1780. doi: 10.1093/ps/77.12.1773
  • 88. Williams B, Waddington D, Murray DH, Farquharson C. Bone strength during growth: influence of growth rate on cortical porosity and mineralization. Calcified Tissue International 2004; 74 (3): 236-245. doi: 10.1007/s00223-002-2124-0
  • 89. Yair R, Uni Z. Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poultry Science 2011; 90 (7): 1523-1531. doi: 10.3382/ps.2010-01283
  • 90. Oliveira TFB, Bertechini AG, Bricka RM, Kim EJ, Gerard PD et al. Effects of in ovo injection of organic zinc, manganese, and copper on the hatchability and bone parameters of broiler hatchlings. Poultry Science 2015; 94 (10): 2488-2494. doi: 10.3382/ps/pev248
  • 91. Scott A, Vadalasetty KP, Łukasiewicz M, Jaworski S, Wierzbicki M et al. Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. Journal of Animal Physiology and Animal Nutrition 2018; 102 (1): e364-e373. doi: 10.1111/jpn.12754
  • 92. Scott A, Vadalasetty KP, Sawosz E, Łukasiewicz M, Vadalasetty RK et al. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Animal Feed Science and Technology 2016; 220: 151-158. doi: 10.1016/j.anifeedsci.2016.08.009
  • 93. Patra A, Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in chicken broiler nutrition and feeding—a review. Biological Trace Element Research 2019; 197: 233-253. doi: 10.1007/s12011-019-01959-1
  • 94. Punjabi K, Choudhary P, Samant L, Mukherjee S, Vaidya S et al. Biosynthesis of nanoparticles: a review. International Journal Pharmaceutical Science Review and Research 2015; 30 (1): 219-226.
  • 95. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arabian Journal ofCchemistry 2019; 12 (8): 3576-3600. doi: 10.1016/j.arabjc.2015.11.002
  • 96. Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Sciences 2019; 20 (4): 865. doi: 10.3390/ijms20040865
  • 97. Anwar MI, Awais MM, Akhtar M, Navid MT, Muhammad F. Nutritional and immunological effects of nano-particles in commercial chicken broiler birds. World’s Poultry Science Journal 2019; 75 (2): 261-272. doi: 10.1017/S0043933919000199
  • 98. Hassan S, Hassan FU, Rehman MS. Nano-particles of trace minerals in chicken broiler nutrition: Potential applications and future prospects. Biological Trace Element Research 2019; 195: 591-612. doi: 10.1007/s12011-019-01862-9
  • 99. Matuszewski A, Łukasiewicz M, Niemiec J. Calcium and phosphorus and their nanoparticle forms in chicken broiler nutrition. World’s Poultry Science Journal 2020: 1-8. doi: 10.1080/00439339.2020.1746221
  • 100. Joshua PP, Valli C, Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Veterinary World 2016; 9 (3): 287-294. doi: 10.14202%2Fvetworld.2016.287-294
  • 101. Ahmadzadeh E, Rowshan FT, Mashkour M. Enhancement of bone mineral density and body mass in newborn chickens by in ovo injection of ionic-hydroxyapatite nanoparticles of bacterial origin. Journal of Materials Science: Materials in Medicine 2019; 30 (2): 16. doi: 10.1007/s10856-018-6210-
  • 102. Goel A, Bhanja SK, Mehra M, Majumdar S, Mandal A. In ovo silver nanoparticle supplementation for improving the post-hatch immunity status of broiler chickens. Archives of Animal Nutrition 2017; 71 (5): 384-394. doi: 10.1080/1745039X.2017.1349637
  • 103. Subramaniyan SA, Kang D, Siddiqui SH, Park J, Tian W et al. Effects of in ovo supplementation with nanonutrition (L-arginine Conjugated with Ag NPs) on muscle growth, immune response and heat shock proteins at different chicken embryonic development stages. Animals 2020; 10 (4): 564. doi: 10.3390/ani10040564
  • 104. Castañeda CD, McDaniel CD, Abdelhamed H, Karsi A, Kiess AS. Evaluating bacterial colonization of a developing broiler embryo after in ovo injection with a bioluminescent bacterium. Poultry Science 2019; 98 (7): 2997-3006. doi: 10.3382/ps/ pez053
  • 105. Al-Khalaifa H, Al-Nasser A, Al-Surayee T, Al-Kandari S, AlEnzi N et al. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poultry Science 2019; 98 (10): 4465-4479. doi: 10.3382/ps/pez282
  • 106. Huang L, Luo L, Zhang Y, Wang Z, Xia Z. Effects of the dietary probiotic, Enterococcus faecium NCIMB11181, on the intestinal barrier and system immune status in Escherichia coli O78-challenged broiler chickens. Probiotics and Antimicrobial Proteins 2019; 11 (3): 946-956. doi: 10.1007/s12602-018-9434-7
  • 107. Zhao Y, Zeng D, Wang H, Qing X, Sun N et al. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens–induced subclinical necrotic enteritis. Probiotics and Antimicrobial Proteins 2019; 1-13. doi: 10.1007/s12602- 019-09597-8
  • 108. Pender CM, Kim S, Potter TD, Ritzi MM, Young M et al. In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poultry Science 2017; 96 (5): 1052-1062. doi: 10.3382/ps/pew381
  • 109. Beck CN, McDaniel CD, Wamsley KG, Kiess AS. The potential for inoculating Lactobacillus animalis and Enterococcus faecium alone or in combination using commercial in ovo technology without negatively impacting hatch and post-hatch performance. Poultry Science 2019; 98 (12): 7050-7062. doi: 10.3382/ps/pez441
  • 110. Skjøt-Rasmussen L, Sandvang D, Blanch A, Nielsen JM, Styrishave T et al. Post hatch recovery of a probiotic Enterococcus faecium strain in the yolk sac and intestinal tract of broiler chickens after in ovo injection. FEMS microbiology letters 2019; 366 (1): i92-i96. doi: 10.1093/femsle/fnz078
  • 111. Majidi-Mosleh A, Sadeghi AA, Mousavi SN, Chamani M, Zarei A. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens. British Poultry Science 2017; 58 (1): 40-45. doi: 10.1080/00071668.2016.123776
  • 112. Alizadeh M, Shojadoost B, Astill J, Taha-Abdelaziz K, Karimi SH et al. Effects of in ovo inoculation of multi-Strain Lactobacilli on cytokine gene expression and antibody-mediated Immune responses in chickens. Frontiers in Veterinary Science 2020; 7: 105. doi: 10.3389/fvets.2020.00105
  • 113. El-Moneim AEEA, El-Wardany I, Abu-Taleb AM, Wakwak MM, Ebeid TA et al. Assessment of in ovo administration of bifidobacterium bifidum and bifidobacterium longum on performance, ileal histomorphometry, blood hematological, and biochemical parameters of broilers. Probiotics and Antimicrobial Proteins 2020; 12 (2): 439-450. doi: 10.1007/s12602-019-09549-2
  • 114. Froebel LK, Jalukar S, Lavergne TA, Lee JT, Duong T. Administration of dietary prebiotics improves growth performance and reduces pathogen colonization in broiler chickens. Poultry Science 2019; 98 (12): 6668-6676. doi: 10.3382/ ps/pez537
  • 115. Awad EA, Zulkifli I, Ramiah SK, Khalil ES, Abdallh ME. Prebiotics supplementation: an effective approach to mitigate the detrimental effects of heat stress in broiler chickens. World’s Poultry Science Journal 2020: 1-7. doi: 10.1080/00439339.2020.1759222
  • 116. Ricke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the chicken broiler gastrointestinal tract microbiome. Poultry Science 2020; 99 (2): 670-677. doi: 10.1016/j.psj.2019.12.018
  • 117. Berrocoso JD, Kida R, Singh AK, Kim YS, Jha R. Effect of in ovo injection of raffinose on growth performance and gut health parameters of broiler chicken. Poultry Science 2017; 96 (6): 1573-1580. doi: 10.3382/ps/pew430
  • 118. Dankowiakowska A, Bogucka J, Sobolewska A, Tavaniello S, Maiorano G et al. Effects of in ovo injection of prebiotics and synbiotics on the productive performance and microstructural features of the superficial pectoral muscle in broiler chickens. Poultry Science 2019; 98 (10): 5157-5165. doi: 10.3382/ps/pez202
  • 119. Stefaniak T, Madej JP, Graczyk S, Siwek M, Łukaszewicz E, et al. Impact of prebiotics and synbiotics administered in ovo on the immune response against experimental antigens in chicken broilers. Animals 2020; 10 (4): 643. doi: 10.3390/ani10040643
  • 120. Dittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science 2018; 5: 216. doi: 10.3389%2Ffvets.2018.00216.
  • 121. Toosi S, Chamani M, Shivazad M, Sadeghi AA, Mousavi SN. Effects of in ovo injection and inclusion a blend of essential oils and organic acids in high NSPS diets of broiler breeders on performance of them and their offspring. The Journal of Poultry Science 2016; 53 (3): 192-200. doi: 10.2141/jpsa.0150150
  • 122. Nouri S, Ghalehkandi JG, Hassanpour S, Aghdam-Shahryar H. Effect of in ovo feeding of folic acid on subsequent growth performance and blood constituents’ levels in broilers. International Journal of Peptide Research and Therapeutics 2018; 24 (3): 463-470. doi: 10.1007/s10989-017-9629-x
  • 123. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050. 2012 revision. Roma, RM, Italy: FAO; 2012. doi: 10.22004/ag.econ.28899
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Quality and fertility of extended boar semen after prolonged transport

Tomislav BARNA, Aleksandar MAŠIĆ, Miloš PAVLOVIĆ, Nevena MAKSIMOVIĆ, Marina LAZAREVIĆ, Jelena APIĆ, Aleksandar MILOVANOVIĆ

In ovo feeding technology: embryonic development, hatchability and hatching quality of broiler chicks

Özer Hakan BAYRAKTAR, Brian TAINIKA

The effect of the metabolic syndrome on the histological structure of the testes tissue and the sperm morphology in the rats

Ayşe ALKANDURUR, Şadiye KUM

A research on Babesia and Theileria species in sheep and goats of Kırıkkale province through molecular methods

Aycan Nuriye GAZYAĞCI, Ufuk KAYA, Sami GÖKPINAR, Meral AYDENİZÖZ

Determination of mucopolysaccharidosis IIID in some goat breeds

Orhan KAVUNCU, Yasemin GEDİK

Effect of biopreservative cultures on the shelf life of modified atmosphere packaged chicken cocktail sausage

Halil DURMUŞOĞLU, Mehmet ÇALICIOĞLU, Sevgi ATAŞ

Comparative efficiency of five mathematical functions in modelling the first lactation milk yield of Kankrej cattle

Thiruvothur Venkatesan RAJA, Satish Kumar RATHEE, Bharat Singh RATHOD, Harshad PANCHASARA, Achintya Kumar DAS, Umesh SINGH, Sushil KUMAR

Identification of novel genetic variants for KAP1.1, KAP1.3 and K33 genes in some of indigenous goat breeds of Turkey

Raziye IŞIK, Emel Özkan ÜNAL, Ayla FİDAN, Mehmet İhsan SOYSAL

In vitro investigation on extracellular traps formation of cat polymorphonuclear leucocytes against Toxoplasma gondii

Kader YILDIZ, Ayşe ŞİMŞEK, Neslihan SÜRSAL ŞİMŞEK

In vitro gas production and fatty acids biohydrogenation of diets containing different unsaturated fatty acids sources plus crude glycerin

Arturo Samuel GOMEZ-INSUASTI, Yury Tatiana GRANJA-SALCEDO, Julian Andrés Castillo VARGAS, Juliana Duarte MESSANA, Ana Paula de Oliveira SADER, Telma Teresinha BERCHIELLI