Carnitine concentrations in healthy and septicaemia suspected neonatal calves and its relation to passive immunty

Carnitine concentrations in healthy and septicaemia suspected neonatal calves and its relation to passive immunty

Abstract: This study was designed to determine carnitine concentrations in newborn calves with suspected septicaemia, healthy calves, and colostrum samples as well as to detect alterations in blood carnitine concentrations after colostrum intake. Carnitine concentrations were detected in both neonatal calves with suspected septicaemia (n = 195) and healthy calves (n =10) as well as in colostrum/milk samples from their dams (n = 20). The mean carnitine concentration on the 2nd day after colostrum intake (32.61 µmol/L) was significantly higher than that measured before colostrum intake (17.61 µmol/L) (P < 0.05). The striking result was significantly lower mean carnitine concentration detected in calves with suspected septicaemia (17.11 µmol/L), compared to healthy calves (24.92 µmol/L) (P < 0.001). Apart from a sudden increase on day 7, no significant alteration was observed in colostrum/milk carnitine concentrations throughout the postpartum period. The results indicated that colostrum contained carnitine, which passed into the bloodstream of the calf by passive colostral transfer, and that a dramatic reduction in blood carnitine concentrations of calves with suspected septicaemia existed. The results might be of help in dealing with septicaemia suspected neonatal calves through both measurement of blood carnitine and, in response, to supplement such cases with carnitine.Key words: Carnitine, septicaemia, neonatal calves, passive immunity, colostrum/milk

___

  • 1. Pardon B, Deprez P. Rational antimicrobial therapy for sepsis in cattle in face of the new legislation on critically important antimicrobials. Vlaams Diergeneeskundig Tijdschrift 2018; 87 (1): 37-46.
  • 2. Bone R, Balk R, Cerra F, Dellinger R, Fein A et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. Chest 1992; 101 (6): 1644-1655.
  • 3. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D et al. 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference. Intensive Care Medicine 2003; 29 (4): 530-538.
  • 4. Prucha M, Bellingan G.Zazula R. Sepsis biomarkers. Clinica Chimica Acta 2015; 440 97-103.
  • 5. Trefz F, Feist M.Lorenz I. Hypoglycaemia in hospitalised neonatal calves: prevalence, associated conditions and impact on prognosis. The Veterinary Journal 2016; 217: 103-108.
  • 6. Fecteau G, Pare J, Van Metre DC, Smith BP, Holmberg CA et al. Use of a clinical sepsis score for predicting bacteremia in neonatal dairy calves on a calf rearing farm. The Canadian Veterinary Journal 1997; 38 (2): 101.
  • 7. Fecteau G, Smith BP.George LW. Septicaemia and meningitis in the newborn calf. Veterinary Clinics of North America: Food Animal Practice 2009; 25 (1): 195-208.
  • 8. Trefz FM, Lorenz I, Lorch A.Constable PD. Clinical signs, profound acidemia, hypoglycemia, and hypernatremia are predictive of mortality in 1,400 critically ill neonatal calves with diarrhea. PLOS One 2017; 12 (8): e0182938.
  • 9. Bonelli F, Meucci V, Divers T, Boccardo A, Pravettoni D et al. Plasma procalcitonin concentration in healthy calves and those with septic systemic inflammatory response syndrome. The Veterinary Journal 2018; 234 61-65.
  • 10. Basoglu A, Sen I, Meoni G, Tenori L.Naseri A. NMR-based plasma metabolomics at set intervals in newborn dairy calves with severe sepsis. Mediators of Inflammation 2018; Article ID 8016510. doi: 10.1155/2018/8016510
  • 11. Lofstedt J, Dohoo IR.Duizer G. Model to predict septicaemia in diarrheic calves. Journal of Veterinary Internal Medicine 1999; 13 (2): 81-88.
  • 12. Lokeshwar M, Rao B, Raksha Dalal NV, Shah N, Chirla D et al., Immuno-haematology of neonatal sepsis. Recent Advances in the Management of Haematological Disorders of Childhood, National Workshop, 1988, pp. 96-110.
  • 13. Buczinski S, Gicquel E, Fecteau G, Takwoingi Y, Chigerwe M et al. Systematic review and meta‐analysis of diagnostic accuracy of serum refractometry and brix refractometry for the diagnosis of inadequate transfer of passive immunity in calves. Journal of Veterinary Internal Medicine 2018; 32 (1): 474-483.
  • 14. Erdoğan HM, Ünver A, Çitil M, Güneş V, Arslan MÖ et al. Dairy farming in Kars district, Turkey: III. Neonatal calf health. Turkish Journal of Veterinary and Animal Sciences 2009; 33 (3): 185-192.
  • 15. Aygun O, Yildiz R. Evaluation of thrombomodulin and pentraxin-3 as diagnostic biomarkers in calves with sepsis. Veterinární Medicína 2018; 63 (7): 313-320.
  • 16. Gokce E, Kirmizigul A, Atakisi O, Kuru M.Erdogan H. Passive immunity in lambs: Colostral and serum gamma glutamyltransferase as a predictor of IgG concentration and related to the diseases from birth to 12 weeks of life. Veterinární Medicína 2020; 66: 45-47.
  • 17. Barton MH, Hurley D, Norton N, Heusner G, Costa L et al. Serum lactoferrin and immunoglobulin G concentrations in healthy or ill neonatal foals and healthy adult horses. Journal of Veterinary Internal Medicine 2006; 20 (6): 1457-1462.
  • 18. Gokce E, Atakisi O, Kirmizigul AH, Unver A.Erdogan HM. Passive immunity in lambs: Serum lactoferrin concentrations as a predictor of IgG concentration and its relation to health status from birth to 12 weeks of life. Small Ruminant Research 2014; 116 (2-3): 219-228.
  • 19. Desjardins-Morrissette M, Van Niekerk J, Haines D, Sugino T, Oba M et al. The effect of tube versus bottle feeding colostrum on immunoglobulin G absorption, abomasal emptying, and plasma hormone concentrations in newborn calves. Journal of Dairy Science 2018; 101 (5): 4168-4179.
  • 20. El-Lahony DM, El-Sayed HM, El-Hawy MA.Abou El-Naga NT. L-carnitine serum level in healthy and septic neonates. Kasr Al Ainy Medical Journal 2018; 24 (1): 26.
  • 21. Hailemariam D, Mandal R, Saleem F, Dunn S, Wishart D et al. Identification of predictive biomarkers of disease state in transition dairy cows. Journal of Dairy Science 2014; 97 (5): 2680-2693.
  • 22. Sato M, Kurosawa A, Watanabe N, Odo S, Ikeda S et al. Seasonal variations in L-carnitine levels in colostrum and milk of Holstein cows. Journal of Agriculture Science, Tokyo University of Agriculture, 2009; 54 (3): 214-217.
  • 23. Sato S, Moriya K, Furukawa M, Saikawa S, Namisaki T et al. Efficacy of L-carnitine on ribavirin-induced hemolytic anemia in patients with hepatitis C virus infection. Clinical and Molecular Hepatology 2019; 25 (1): 65.
  • 24. Marín VB, Azocar M, Molina M, Guerrero JL, Ratner R et al., Total carnitine and acylated carnitine ratio: relationship of free carnitine with lipid parameters in pediatric dialysis patients. Advances in Peritoneal Dialysis, Conference on Peritoneal Dialysis, 2006, pp. 130-135.
  • 25. Athanassakis I, Dionyssopoulou E, Papanikou S, Evangeliou A.Vassiliadis S. Early events of the exogenously provided L-Carnitine in murine macrophages, T-and B-lymphocytes: modulation of prostaglandin E1 and E2 production in response to arachidonic acid. The Journal of Nutritional Biochemistry 2003; 14 (6): 350-357.
  • 26. Osorio J, Trevisi E, Ji P, Drackley J, Luchini D et al. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. Journal of Dairy Science 2014; 97 (12): 7437-7450.
  • 27. Sakai Y, Nishikawa H, Enomoto H, Yoh K, Iwata Y et al. Effect of L-carnitine in patients with liver cirrhosis on energy metabolism using indirect calorimetry: a pilot study. Journal of Clinical Medicine Research 2016; 8 (12): 863.
  • 28. Thangasamy T, Subathra M, Sittadjody S, Jeyakumar P, Joyee AG et al. Role of L-carnitine in the modulation of immune response in aged rats. Clinica Chimica Acta 2008; 389 (1-2): 19-24.
  • 29. Li K, Sun Q. Simultaneous determination of free and total carnitine in human serum by HPLC with UV detection. Journal of Chromatographic Science 2010; 48 (5): 371-374.
  • 30. Erkilic E, Erdogan H, Ogun M, Kirmizigul AH, Gokce E et al. Relationship between hepcidin and oxidant/antioxidant status in calves with suspected neonatal septicaemia. Veterinary World 2016; 9 (11): 1238.
  • 31. Radostits OM, Gay CC, Hinchcliff KW.Constable PD, Veterinary Medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats: Elsevier Health Sciences, 2006.
  • 32. Galan A, Padros A, Arambarri M.Martin S. Automation of a spectrophotometric method for measuring L-carnitine in human blood serum. Journal of Automatic Chemistry 1998; 20 (1): 23-26.
  • 33. Prieto JA, Andrade F, Aldámiz-Echevarría L.Sanjurjo P. Determination of free and total carnitine in plasma by an enzymatic reaction and spectrophotometric quantitation spectrophotometric determination of carnitine. Clinical Biochemistry 2006; 39 (10): 1022-1027.
  • 34. Atakisi O, Oral H, Atakisi E, Merhan O, Pancarci SM et al. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Research in Veterinary Science 2010; 89 (1): 10-13.
  • 35. Beam A, Lombard J, Kopral C, Garber L, Winter A et al. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. Journal of Dairy Science 2009; 92 (8): 3973-3980.
  • 36. Zakian A, Nouri M, Rasooli A, Ghorbanpour M, Constable PD et al. Evaluation of 5 methods for diagnosing failure of passive transfer in 160 Holstein calves. Veterinary Clinical Pathology 2018; 47 (2): 275-283.
  • 37. Talukder MJR, Takeuchi T.Harada E. Receptor-mediated transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. Journal of Veterinary Medical Science 2003; 65 (9): 957-964.
  • 38. Clark M, Stein RE, Silver EJ, Khalid S, Fuloria M et al. Carnitine deficiency in preterm infants: A national survey of knowledge and practices. Journal of Neonatal-Perinatal Medicine 2017; 10 (4): 381-386.
  • 39. Meyburg J, Schulze A, Kohlmueller D, Pöschl J, Linderkamp O et al. Acylcarnitine profiles of preterm infants over the first four weeks of life. Pediatric research 2002; 52 (5): 720-723.
  • 40. Penn D, Dolderer M.Schmidt-Sommerfeld E. Carnitine concentrations in the milk of different species and infant formulas. Neonatology 1987; 52 (2): 70-79.
  • 41. Bremer J. Carnitine--metabolism and functions. Physiological Reviews 1983; 63 (4): 1420-1480.
  • 42. Scaglia F, Longo N, Primary and secondary alterations of neonatal carnitine metabolism. Seminars in Perinatology 1999; pp. 152-161.
  • 43. Hall G, Bridger J, Parsons K.Cook R. Variation in rotavirus virulence: a comparison of pathogenesis in calves between two rotaviruses of different virulence. Veterinary Pathology 1993; 30 (3): 223-233.
  • 44. Harmeyer J, Schlumbohm C, Die physiologische Bedeutung von l-Carnitin und Effekte von Carnitinzulagen bei Haustieren. Proc. 6. Symp. Vitamine und weitere Zusatzstoffe bei Mensch und Tier 1997; p. 25. (in German).
  • 45. LaCount D, Drackley JK.Weigel D. Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. Journal of Dairy Science 1995; 78 (8): 1824- 1836.
  • 46. Woollard DC, Indyk HE.Woollard GA. Carnitine in milk: a survey of content, distribution and temporal variation. Food Chemistry 1999; 66 (1): 121-127.
  • 47. De Simone C, Ferrari M, Lozzi A, Meli D, Ricca D et al. Vitamins and immunity: II. Influence of L-carnitine on the immune system. Acta Vitaminologica et Enzymologica 1982; 4 (1-2): 135.
  • 48. Şener G, Ekşioğlu-Demiralp E, Cetiner M, Ercan F, Şirvancı S et al. L-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biology and Toxicology 2006; 22 (1): 47-60.
  • 49. Famularo G, Tzantzoglou S, Santini G, Trinchieri V, Moretti S et al. L-carnitine: a partner between immune response and lipid metabolism? Mediators of Inflammation 1993; 2
  • 50. İzgüt-Uysal VN, Ağaç A, Karadoğan İ.Derin N. Effects of L-carnitine on neutrophil functions in aged rats. Mechanisms of Ageing and Development 2003; 124 (3): 341-347.
  • 51. Klein KA, Clark C.Allen AL. Hypoglycemia in sick and moribund farmed elk calves. The Canadian Veterinary Journal 2002; 43 (10): 778.
  • 52. Godden S. Lombard JE. Woolums AR. Colostrum management for dairy calves. Veterinary Clinics of North America: Food Animal Practice 2019; 35(3):535-556.
  • 53. Tsukano K, Sarashina S.Suzuki K. Hypoglycemia and failure of respiratory compensation are risk factors for mortality in diarrheic calves in Hokkaido, northern Japan. Journal of Veterinary Medical Science 2018; 80 (7): 1159-1164.
  • 54. Vandana G, Lokesh rao magar S, Praveen D, Kavita devi B, Rani S et al. Haematological profile in neonatal septiceamia. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) 2010; 16 (4): 11-17.
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The morphological and morphometric characteristics of Alabadem pigeons

Fatma Tülin ÖZBAŞER, Eser Kemal GÜRCAN, Evren ERDEM, Mehmet İhsan SOYSAL

Effects of dietary guar meal with or without beta-mannanase on the egg yolk fatty acids, cholesterol, and some blood parameters of laying hens

Süleyman ÇALIŞLAR

Ruminal kinetics of carbohydrates, gas production and bromatology of sugarcane silage with high levels of sodium benzoate

Celso HEINZEN JUNIOR, Odimári Pricila Prado CALIXTO, Egon Henrique HORST, Leonardo TROLEGI, Fernando Luiz MASSARO JUNIOR, Ivone Yurika MIZUBUTI, Mikael NEUMANN, Valter Harry BUMBIERIS JUNIOR

Isolation and identification of Clostridium difficile from cases of diarrhea in young farm animals, and the determination of antimicrobial susceptibility

Ediz Kağan ÖZGEN, Murat YILDIRIM

IGF-1 and GH alterations in lambs with intestinal inflammation

Duygu UDUM KÜÇÜKŞEN, İlker ERCAN, Ethem Mutlu TEMİZEL, Adil Ömer KARAKUŞ, Fatih KAVUKCU

Molecular characterization of VP2 and VP3 proteins of chicken anemia virus isolates in Turkey

Sezer OKAY, Şinasi AŞKAR

The effects of propofol-sevoflurane, midazolam-sevoflurane, and medetomidineketamine-sevoflurane anesthetic combinations on tear production measured by the schirmer tear test I (STT I) in healthy rabbits

Cengiz CEYLAN, Hanifi EROL, Muharrem EROL, Gültekin ATALAN, Muhammed Kaan YÖNEZ

Effects of honeybee (apis mellifera) venom on redox balance, biochemical and hematological profile in diabetic rats: A preliminary study

Abdurrahman Fatih FİDAN, Barış DENK

Immunoglobulins and acute phase proteins in Van cats - associations with sex, age, and eye colour

Vahdettin ALTUNOK, Pınar COŞKUN, Filiz KAZAK, Nazmi YÜKSEK

Immunohistological effects of transforming growth factor-β via platelet-rich plasma on segmental bone defects: an animal study

Cengiz CEYLAN, Gökhan MERİÇ, Aziz ATİK, Serdar SARGIN