Isolation and identification of Clostridium difficile from cases of diarrhea in young farm animals, and the determination of antimicrobial susceptibility

Isolation and identification of Clostridium difficile from cases of diarrhea in young farm animals, and the determination of antimicrobial susceptibility

Abstract: Clostridium difficile was isolated for the first time in 1935 from fecal samples of infants, although it was not until 1978 that its pathogenicity started to be considered, when it was shown to cause antibiotic-associated diarrhea and pseudomembranous colitis. In this study, it was aimed to determine the virulence and antibiotic resistance profiles of C. dificile in young ruminants with diarrhea and chickens fed on the farm. A total of 200 fecal samples (50 from calves, 50 from lambs and 50 from kid goats with neonatal diarrhea, as well as 50 cloacal swab samples taken from chickens) were taken and analyzed. C. difficile was isolated from 58 of the fecal samples (29.0%), being isolated from 35 of the fecal samples taken from calves (70.0%), 15 from lambs (30.0%), seven from kid goats (14.0%) and one from chickens (2.0%), and of these, 28 isolates were found to have toxigenic characteristics (48.2%) following species identification and toxin characterization. In the following stage, antimicrobial susceptibility tests were performed for a total of 24 toxigenic strains using the microbroth dilution method, and the toxigenic isolates were found to be resistant to ampicillin, cefoxitin, clindamycin, penicillin and tetracycline. The study identified the presence of toxigenic C. difficile in diarrhea cases in neonatal calves and lambs for the first time in our country.Key words: Clostridium difficile, antimicrobial susceptibility test, Erzurum, neonatal, Farm animal, calf

___

  • 1. Mullany P, Roberts AP. Clostridium difficile Methods and Protocols. Methods in Molecular Biology 646. New York, NY, USA: Humana Press; 2010.
  • 2. Dawson LF, Valiente E, Wren BW. Clostridium difficile-a continually evolving and problematic pathogen. Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 2009; 9 (6): 1410-1417. doi: 10.1016/j. meegid.2009.06.005
  • 3. Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E. Role of hospital surfaces in the transmission of emerging health care associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. American Journal of Infection Control 2010; 38 (5 Suppl.): S25-S33. doi: 10.1016/j. ajic.2010.04.196
  • 4. Rupnik M, Grabnar M, Geric B. Binary toxin producing Clostridium difficile. Anaerobe 2003; 9 (6): 289-294. doi: 10.1016/j.anaerobe.2003.09.002
  • 5. Simango C, Mwakurudza S. Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. International Journal of Food Microbiology 2008; 124 (3): 268-270. doi: 10.1016/j. ijfoodmicro.2008.03.020
  • 6. Avbersek J, Janezik S, Pate M, Rupnik M, Zidaric V et al. Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 2009; 15 (6): 252-255. doi: 10.1016/j. anaerobe.2009.07.004
  • 7. Zidaric V, Zemljic M, Janezic S, Kocuvan A, Rupnik M. High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe 2008; 14 (6): 325-327. doi: 10.1016/j.anaerobe.2008.10.001
  • 8. Songer JG. Clostridia as agents of zoonotic disease. Veterinary Microbiology 2010; 140 (3-4): 399-404. doi: 10.1016/j. vetmic.2009.07.003
  • 9. Keessen EC, Gaastra W, Lipman LJA. Clostridium difficile infection in humans and animals, differences and smilarities. Veterinary Microbiology 2011; 153 (3-4): 205-217. doi: 10.1016/j.vetmic.2011.03.020
  • 10. Lemee L, Dhalluin A, Testelin S, Mattrat MA, Maillard K et al. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxin a), and tcdB (toxin b) genes for toxigenic culture of Clostridium difficile. Journal of Clinical Microbiology 2004; 42 (12): 5710-5714. doi: 10.1128/JCM.42.12.5710-5714.2004
  • 11. Person S, Torpdahl M, Olsen KEP. New multiplex PCR method for the detection Clostridium difficile toxin a (tcdA), and toxin b (tcdB), and binary toxin (cdtA/cdtB) genes applied to Danish strain colection. Clinical Microbiology and Infection: the Official Publication of the European Society of Clinica lMicrobiology and Infectious Diseases 2008; 14 (11): 1057- 1064. doi:10.1111/j.1469-0691.2008.02092.x
  • 12. The European Committee on Antimicrobial Susceptibility Testing. Clostridium difficile: Clinical breakpoint tables for interpretation of MICs and zone diameters version 8.0. European Committee on Antimicrobial Susceptibility Testing. Växjö, Sweden: EUCAST; 2018.
  • 13. Roe-Carpenter DR. Anaerobe antimicrobial susceptibility testing. In: Schwalbe R, Steele-Moore L, Goodwin AC (editors). Antimicrobial Susceptibility Testing Protocols. Boca Raton, FL, USA: CRC Press Taylor & Francis Group; 2007. pp. 139- 171.
  • 14. Jones AM, Kuijper EJ, Wilcox MH. Clostridium difficile: a European perspective. The Journal of Infection 2013; 66 (2): 115-128. doi: 10.1016/j.jinf.2012.10.019
  • 15. Bandelj P, Blagus R, Brıskı F, Frlic O, Rataj AV et al. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Veterinary Research 2016; 47: 41. doi: 10.1186/s13567-016-0326-0
  • 16. Costa MC, Stampfli HR, Arroyo LG, Pearl DI, Weese JS. Epidemiology of Clostridium difficile on a veal farm: prevalence, molecular characterization and tetracycline resistance. Veterinary Microbiology 2011; 152 (3-4): 379-384. doi: 10.1016/j.vetmic.2011.05.014
  • 17. Hussain I, Borah P, Sharma RK, Rajkhow AS, Rupnik M et al. Molecular characteristics of Clostridium difficile isolates from human and animals in the North Eastern region of India. Molecular and Cellular Probes 2016; 30 (5): 306-311. doi: 10.1016/j.mcp.2016.08.010
  • 18. Koene MGJ, Mevius D, Wagenaar AJ, Harmanus C, Hensgens MPM et al. Clostridium difficile in Dutch animals: their presence, characteristic similarities with human isolates. Clinical Microbiology and Infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2012; 18 (8): 778-784. doi: 10.1111/j.1469- 0691.2011.03651.x
  • 19. Magistralli CF, Maresca C, Cucco L, Bano L, Drigo I et al. Prevalence and risk factors associated with Clostridium difficile shedding in veal calves in Italy. Anaerobe 2015; 33: 42-47. doi: 10.1016/j.anaerobe.2015.01.010
  • 20. Pirs T, Ocepek M, Rupnik M. Isolation of Clostridium difficile from food animals in Slovenia. Journal of Medical Microbiology 2008; 57 (6): 790-792. doi: 10.1099/jmm.0.47669-0
  • 21. Rodriguez-Palacios A, Stampfli HR, Duffield T, Peregrine AS, Trotz-Williams LA et al. Clostridium difficile PCR ribotypes in calves, Canada. Emeging Infectious Diseases 2006; 12 (11): 1730-1736. doi: 10.3201/eid1211.051581
  • 22. Schneeberg A, Neubauer H, Schmoock G, Grossmann E, Seyboldt C. Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. Journal of Medical Microbiology 2013; 2 (8): 1190- 1198. doi: 10.1099/jmm.0.056473-0
  • 23. Avbersek J, Pirs T, Pate M, Rupnik M, Ocepek M. Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe 2014; 28: 163-167. doi: 10.1016/j.anaerobe.2014.06.009
  • 24. Knight DR, Riley TV. Prevalence of Gastrointestinal Clostridium difficile carriage in Australian sheep and lambs. Applied and Environmental Microbiology 2013; 79 (18): 5689- 5692. doi: 10.1128/AEM.01888-13
  • 25. McNamara SE, Abdujamilova N, Somsel P, Gordoncillo MJ, Dedecker JM et al. Carriage of Clostridium difficile and other enteric pathogens among a 4-H avocational cohort. Zoonoses and Public Health 2011; 8 (3): 192-199. doi: 10.1111/j.1863- 2378.2010.01338.x
  • 26. Saif NA, Brazier JS. The distribution of Clostridium difficile in the environment of South Wales. Journal of Medical Microbiology 1996; 5(2): 133-137. doi: 10.1099/00222615-45- 2-133
  • 27. Romano V, Albanese F, Dumontet S, Krovacek K, Petrini O et al. Prevalence and genotyping characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 2012; 59 (8): 545-548. doi: 10.1111/j.1863-2378.2012.01540.
  • 28. Guran HS, Ilhak OI. Clostridium difficile in retail chicken meat parts and liver in Eastern Region of Turkey. Journal of Consumer Protection and Food Safety 2015; 10: 359-364. doi: 10.1007/s00003-015-0950-z
  • 29. Pirs T, Avbersek J, Zdovc I, Krt B, Andlovic A et al. Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. Journal of Medical Microbiology 2013; 2 (9): 1478-1485. doi: 10.1099/ jmm.0.058875-0
  • 30. Hampikyan H, Bingol EB, Muratoglu K, Akkaya E, Cetin O et al. The prevalence of Clostridium difficile in cattle and sheep carcasses and the antibiotic susceptibility of isolates. Meat Science 2018; 139: 120-124. doi: 10.1016/j.meatsci.2018.01.020
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ocular ultrasonography and echobiometry in sheep

https://orcid.org/0000-0002-6306-5835, Jalal Udin PARRAH, Nida HANDOO, Abdul Qayoom MIR, Mehraj Udin DAR, Beenish QURESHI

Postpartum uterine involution and ovarian follicular dynamics in crossbreed Anatolian water buffalo (Bubalus bubalis) during summer season

Oktay YILMAZ, Ebubekir YAZICI, Hasan ÇİÇEK, Hacı Ahmet ÇELİK, Mehmet UÇAR, Cangir UYARLAR

Effects of leptin and thyroglobulin gene polymorphisms on beef quality in Holstein breed bulls in Turkey

Süleyman KÖK, Güldan VAPUR

Determination of quality of working life of private veterinarians: validity and reliability study

Mustafa Agah TEKİNDAL, Gökhan ASLIM, Aşkın YAŞAR

Analysis of some heavy metals (Cd and Pb) in the Şanlıurfa province using Feral pigeon blood samples

Füsun TEMAMOĞULLARI, Özlem ÜTME

Genetic parameter estimates of fear, growth, and carcass characteristics in Japanese quail

Doğan NARİNÇ, Barış Aybars GENÇ

Dried tomato pomace in rabbit nutrition: effects on carcass characteristics and meat quality

Nouha GRIOUI, Hager BOUKHRIS, Chokri DAMERGI, Wafa HAJJI, Hamadi RIAHI, Manef ABDERRABBA, Taha NAJAR, Mondher MEJRI

The effects of propofol-sevoflurane, midazolam-sevoflurane, and medetomidineketamine-sevoflurane anesthetic combinations on tear production measured by the schirmer tear test I (STT I) in healthy rabbits

Cengiz CEYLAN, Hanifi EROL, Muharrem EROL, Gültekin ATALAN, Muhammed Kaan YÖNEZ

Effects of milk replacer and whole milk feeding on rumen development, expression of genes related to volatile fatty acid absorption, and rumen bacteria in calves

Ali ÇALIK, Pınar SAÇAKLI, Doğukan ÖZEN, Alev Gürol BAYRAKTAROĞLU, Ahmet CEYLAN, Burcu EKİM, Oğuz ÇALIŞICI

The morphological and morphometric characteristics of Alabadem pigeons

Fatma Tülin ÖZBAŞER, Eser Kemal GÜRCAN, Evren ERDEM, Mehmet İhsan SOYSAL