SİLİNDİRİK EYLEMSİZ ELEKTROSTATİK SIKIŞTIRMALI FÜZYON CİHAZINDA ALINAN DENEYSEL SONUÇLAR

Bu çalışmada, Sarayköy Nükleer Araştırma ve Eğitim Merkezi (SANAEM)’ nde tasarlanıp kurulan silindirik eylemsiz elektrostatik sıkıştırmalı füzyon cihazı ile alınan ilk sonuçlar sunulmuştur. Bu cihaz, Döteryum-Döteryum (D-D) füzyon reaksiyonlarına dayanan nötron çalışmaları için tasarlanmış olup silindirik anot ve ızgara tipi silindirik katottan oluşmaktadır. Vakum odacığı olarak da adlandırılan anot, sıfır potansiyelde tutulur ve vakum pompası, vakum ölçer, yüksek voltaj besleme elemanı, iyon kaynakları ve sistem için gerekli olabilecek diğer bağlantılar için 11 adet girişe sahiptir. Katot ise vakum odacığının merkezine yerleştirilir ve katoda yüksek negatif voltaj uygulanır. Uygulanan maksimum katot voltajı 95 kV’dir. Çalışma basıncı 1x10-4 mbar ve 9x10-4 mbar aralığındadır. Vakum odacığındaki iyon konsantrasyonunu arttırmak için iki adet indüktif eşleşmiş plazma (ICP) tipi iyon kaynağı kullanılır ve böylece katot ekseni boyunca füzyon olasılığı da artar. Füzyon reaksiyonları ile üretilen nötronlar, helyum-3 dolu bir nötron detektörü ile tespit edilir. Mevcut sistem ile yapılan çalışma sonucunda elde edilen maksimum toplam nötron sayısı yaklaşık olarak 5x107 nötron/saniyedir.

RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE

In this study, a cylindrical inertial electrostatic confinement (IEC) device, designed and constructed at the Saraykoy Nuclear Research and Training Center, is introduced and the first results are reported. This device was designed for neutronic fusion studies based on Deuterium–Deuterium (D-D) reactions. The cylindrical IEC device consists of cylindrical anode and a grid-type cylindrical cathode. The anode, also called vacuum chamber, is held at ground potential and has 11 ports to connect the vacuum pump, vacuum gauge, high voltage load, ion sources and other peripherals. The cathode is placed at the center of chamber and high negative voltage is applied to it. Maximum cathode voltage is 95 kV. The operating pressure range is between 1x10-4 mbar and 9x10-4 mbar. Two Inductively Coupled Plasma (ICP) type ion sources are used to increase the ion concentration and hence the fusion probability at the axis of the cathode. The neutrons generated by fusion reactions are detected by a helium-3 filled neutron detector. The maximum total neutron production rate is measured at around 5x107 neutrons per second with the present configuration.

___

  • Ashley, R.P., Kulcinski, G.L., Santarius, J.F., Murali, S.K. and Piefer, G. (1999, October) D-3He Fusion in an Inertial Electrostatic Confinement Device. 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, Albuquerque, NM, USA.
  • Ashley, R.P., Kulcinski, G.L., Santarius, J.F., Murali, S.K., Piefer, G.R., Cipiti, B.B., Radel, R. F. and Weidner, J. (2003). Recent Progress in Steady State Fusion Using D-3He. Fusion Science and Technology, 44(2), 564-566. Doi: 10.13182/FST03-A398
  • Boris, D.R., Alderson, E., Becerra, G., Donovan, D.C., Egle, B., Emmert, G.A., Garrison, L., Kulcinski, G.L., Santarius, J.F., Schuff, C. and Zenobia, S.J. (2009). Deuterium anions in inertial electrostatic confinement devices. Phys. Rev., E 80, 036408. Doi:10.1103/PhysRevE.80.036408
  • Bölükdemir, A.S., Akgün, Y. and Alaçakır, A. (2013). Preliminary results from experimental studies of low pressure inertial electrostatic confinement device. Journal of Fusion Energy, 32, 561–565. Doi: 10.1007/s10894-013-9607-z
  • Bölükdemir, A.S. (2013). The construction and experimental studies of inertial electrostatic confinement fusion device in low pressure (PhD. Thesis, Gazi University, Ankara). Erişim adresi: http://www.acikarsiv.gazi.edu.tr/index.php?menu=2&secim=10&YayinBIK=9480#
  • Chacon, L., Bromley, B. and Miley, G. (1997, October). Prospects of the Cylindrical IEC Fusion Device as a Neutron Source. Proceedings of the 17th IEEE/NPSS Symposium Fusion Engineering, San Diego, CA.
  • Damideh, V., Sadighzadeh, A., Koohi, A., Aslezaeem, A., Heidarnia, A., Abdollahi, N., Davani, F.A. and Damideh, R. (2012). Experimental Study of the Iranian Inertial ElectrostaticConfinement Fusion Device as a Continuous Neutron Generator. J Fusion Energ, 31, 109–111. Doi: 10.1007/s10894-011-9438-8
  • Donovan, D. C. (2011). Spatial profiling using a time of flight diagnostic and applications of deuterium-deuterium fusion in inertial electrostatic confinement fusion devices (PhD Thesis, University of Wisconsin Fusion Technology Institute, Madison). Erişim adresi: http://fti.neep.wisc.edu/pdf/fdm1392.pdf
  • Ebrahimi, E.H., Amrollahi, R., Sadighzadeh, A., Torabi, M., Sedaghat, M., Sabri, R., Pourshahab, B. and Damideh, V. (2013). The influence of cathode voltage and discharge current on neutron production rate of inertial electrostatic confinement fusion (IR-IECF). J Fusion Energ, 32(1), 62–65. Doi:10.1007/s10894-012-9524-6
  • Farnsworth, P.T. patented June 28 (1966). Electric discharge device for producing interaction between nuclei. U.S. Patent #3,258,402. Erişim Adresi: https://patentimages.storage.googleapis.com/40/00/36/4437c3b8018b75/US3258402.pdf
  • Hirsch, R. L. (1967). Inertial‐Electrostatic Confinement of Ionized Fusion Gases. Journal of Applied Physics, 38, 4522. Doi:10.1063/1.1709162
  • Krane K.S. (1988). Introductory nuclear physics (2nd. ed.). New York: John Wiley.
  • Masuda, K., Taruya, K., Koyama, T., Hashimoto, H., Yoshikawa, K., Toku H., Yamamoto, Y., Ohnishi, M., Horiike, H. and Inoue, N. (2001). Performance characteristics of an inertial electrostatic confinement fusion device with a triple-grid system. Fusion Technology, 39(3), 1202–1210. Doi:10.13182/FST01-A174
  • Matsuura, H., Takaki, T., Funakoshi, K., Nakao, Y. and Kudo, K. (2000). Ion distribution function and radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Nucl. Fusion, 40(12), 1951–1954. Erişim adresi: http://iopscience.iop.org/article/10.1088/0029-5515/40/12/101/pdf
  • Meyer, R.M., Loyalka, S.K. and Prelas, M.A. (2005). Potential well structures in spherical inertial electrostatic confinement devices. IEEE Transactions on Plasma Science, 33(4), 1377–1394. Doi:10.1109/TPS.2005.852350
  • Miley, G.H., Nadler, J., Hochberg, T., Gu, Y. and Barnouin, O. (1991). Inertial-Electrostatic Confinement: An Approach to Burning Advanced Fuels. Fusion Technol., 19, 840–845. Doi:10.13182/FST91-3
  • Miley, G.H., (1999). A portable neutron/tunable X-ray source based on inertial electrostatic conÞnement. Nuclear Instruments and Methods in Physics Research A., 422, 16–20. Erişim adresi: http://fsl.npre.illinois.edu/IEC/Miley_Phys.Research.(1999).pdf
  • Miley, G.H. and Sved, J. (2000). The IEC star-mode fusion neutron source for NAA—status and next-step designs. Applied Radiation and Isotopes, 53, 779–783. Erişim adresi: https://www.ncbi.nlm.nih.gov/pubmed/11003520
  • Miley, G.H. and Murali, S.K. (2014). Inertial electrostatic confinement (IEC) fusion. Doi: 10.1007/978-1-4614-9338-9.
  • Nebel, R. A and Barnes, D.C. (1998). The Periodically Oscillating Plasma Sphere. Fusion Science and Technology, 34(1), 28–45. Doi:10.13182/FST98-A51
  • Ohnishi, M., Sato, K. H., Yamamoto, Y. and Yoshikawa, Y. (1997). Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion. Nuclear Fusion, 37(5), 611-619. Erişim adresi: http://iopscience.iop.org/article/10.1088/0029-5515/37/5/I04/pdf
  • Ohnishi, M., Hoshino, C., Yoshikawa, K., Masuda, K. and Yamamoto, Y. (2000). Beam optics in inertial electrostatic confinement fusion. Review of Scientific Instruments, 71(2), 1210-1212. Doi:10.1063/1.1150430
  • Oura, S., Yamauchi, K., Watanabe, M., Okino, A., Kohno, T. and Hotta, E. (2006). Neutron and Proton Measurements of Cylindrical Radially Convergent Beam Fusion. Journal of the Korean Physical Society, 49, 384-388. Erişim adresi: http://www.jkps.or.kr/journal/list.html?page=7&sort=&scale=10&key=&keyword=&s_v=49&s_n=9(6)&pn=vol&TG=vol&year=2006
  • Piefer, G. R., Santarius, J. F., Ashley, R. P. and Kulcinski, G. L. (2005). Design of an ion source for 3He Fusion in a low pressure IEC device. Fusion Science and Technology, 47(4): 1255-1259. Doi: 10.13182/FST05-A860
  • Rider, T. (1995). A general critique of inertial‐electrostatic confinement fusion systems. Physics of Plasmas, 2(6), 1853-1872. Doi:10.1063/1.871273
  • Takamatsu, T., Masuda, K., Kyunai, T., Toku H. and Yoshikawa, K. (2006). Inertial electrostatic confinement fusion device with an ion source using a magnetron discharge. Nucl. Fusion, 46, 142–148. Doi:10.1088/0029-5515/46/1/016
  • Weidner, J. W. (2003). The production of 13N from inertial electrostatic confinement fusion (Master of Science, University of Wisconsin Fusion Technology Institute, Madison). Erişim adresi: http://fti.neep.wisc.edu/pdf/fdm1210.pdf
  • Yamauchi, K., Ogasawara, K., Watanabe, M., Okino, A., Sunaga Y. and Hotta, E. (2001). Neutron Production Characteristics and Emission Properties of Spherically Convergent Beam Fusion. Fusion Science and Technology, 39(3), 1182-1187. Doi: 10.13182/FST01-A171