Wnt signaling pathway activities may be altered in primary Sjogren’s syndrome

Wnt signaling pathway activities may be altered in primary Sjogren’s syndrome

Background/aim: Sjögren’s syndrome (SS) is an autoimmune disease and its pathogenesis is still not completely clear. The wingless (Wnt)/β-catenin pathway has recently been shown to play an important role in inflammation. This study aims to determine the serum and saliva levels of Dickkopf (DKK)1 and sclerostin and to evaluate Wnt-1 and Wnt-3a expression in the salivary gland in patients with primary SS. Materials and methods: This study included 30 patients diagnosed with SS, 30 patients diagnosed with systemic lupus erythematosus (SLE), and 29 healthy controls. Serum and saliva levels of DKK1 and sclerostin were measured and the expressions of Wnt1 and Wnt3a in the salivary gland were measured immunohistochemically. Results: Serum DKK1 and sclerostin levels were lower in the SS and SLE groups compared to the control group (both p < 0.001). Saliva DKK1 levels were higher in the SS group compared to the control and SLE groups (p = 0.004 and p = 0.009, respectively). Wnt1 and Wnt3a expression were found in salivary gland tissue samples in 71.4% of primary SS patients and relatively frequent than control group. Conclusions: Serum DKK1 and sclerostin levels in primary SS and SLE were decreased. Moreover, levels of Wnt1 and Wnt3a expression in the salivary gland were also elevated in primary SS. Therefore, it can be concluded that the Wnt/β-catenin pathway activities may be altered in case of glandular inflammation.Key words: Sjögren syndrome, wingless, sclerostin, dickkopf -1

___

  • 1. Bowman SJ, Ibrahim GH, Holmes G, Hamburger J, Ainsworth JR. Estimating the prevalence among Caucasian women of primary Sjögren’s syndrome in two general practices in Birmingham, UK. Scandinavian Journal of Rheumatology 2004; 33 (1): 39-43. doi:10.1080/03009740310004676
  • 2. Daniels TE, Fox PC. Salivary and oral components of Sjögren’s syndrome. Rheumatic Disease Clinics of North America 1992; 18 (3): 571-589
  • 3. Kramer JM. Early events in Sjögren’s Syndrome pathogenesis: the importance of innate immunity in disease initiation. Cytokine 2014; 67 (2): 92-101. doi: 10.1016/j.cyto.2014.02.009
  • 4. Cafaro G, Croia C, Argyropoulou OD, Leone MC, Orlandi M et al. One year in review 2019: Sjögren’s syndrome. Clinical and Experimental Rheumatology 2019; 37118 (3): 3-15.
  • 5. Sandhya P, Kurien BT, Danda D, Scofield RH. Update on pathogenesis of Sjogren’s Syndrome. Current Rheumatology Reviews 2017; 13 (1): 5-22. doi: 10.2174/15733971126661607 14164149
  • 6. García-Carrasco M, Fuentes-Alexandro S, Escárcega RO, Salgado G, Riebeling C et al. Pathophysiology of Sjögren’s syndrome. Archives of Medical Research 2006; 37 (8): 921-932. doi: 10.1016/j.arcmed.2006.08.002
  • 7. Miyamoto ST, Valim V, Fisher BA. Health-related quality of life and costs in Sjögren’s syndrome. Rheumatology (Oxford) 2019; 15: key370. doi: 10.1093/rheumatology/key370
  • 8. Maarse F, Jager DH, Forouzanfar T, Wolff J, Brand HS. Tooth loss in Sjögren’s syndrome patients compared to age and gender matched controls. Medicina Oral Patologia Oral y Cirugia Bucal 2018; 23 (5): e545-e551. doi: 10.4317/medoral.22545
  • 9. Kim SY, Lee J, Choi YS, Kim JW, Kwok SK et al. Do I sound dry? Comparative voice analysis of primary Sjögren’s syndrome. Clinical and Experimental Rheumatology 2018; 112 (3): 130- 136.
  • 10. Brito-Zerón P, Retamozo S, Kostov B, Baldini C, Bootsma H et al. Efficacy and safety of topical and systemic medications: a systematic literature review informing the EULAR recommendations for the management of Sjögren’s syndrome. RMD Open 2019; 5 (2): e001064. doi: 10.1136/ rmdopen-2019-001064
  • 11. Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nature Reviews Immunology 2008; 8 (8): 581-593. doi: 10.1038/nri2360
  • 12. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149 (6): 1192-1205. doi: 10.1016/j.cell.2012.05.012
  • 13. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4 (2): 68-75. doi: 10.4161/org.4.2.5851
  • 14. Tamai K, Semenov M, Kato Y, Spokony R, Liu C et al. LDLreceptor-related proteins in Wnt signal transduction. Nature 2000; 407 (6803): 530-535. doi: 10.1038/35035117
  • 15. Malinauskas T, Jones EY. Extracellular modulators of Wnt signalling. Current Opinion in Structural Biology 2014; 29: 77- 84. doi: 10.1016/j.sbi.2014.10.003
  • 16. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006; 25 (57): 7469-7481. doi: 10.1038/sj.onc.1210054
  • 17. Cici D, Corrado A, Rotondo C, Cantatore FP. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. International Journal of Molecular Sciences 2019; 20 (22): 5552. doi: 10.3390/ijms20225552
  • 18. Wang XD, Huang XF, Yan QR, Bao CD. Aberrant activation of the WNT/β-catenin signaling pathway in lupus nephritis. PLoS One 2014; 9 (1): e84852. doi: 10.1371/journal.pone.0084852
  • 19. Shiboski SC, Shiboski CH, Criswell L, Baer A, Challacombe S et al. American College of Rheumatology classification criteria for Sjögren’s syndrome: a data-driven, expert consensus approach in the Sjögren’s International Collaborative Clinical Alliance cohort. Arthritis Care & Research 2012; 64 (4): 475- 487. doi: 10.1002/acr.21591
  • 20. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis & Rheumatology 2012; 64 (8): 2677- 2686. doi: 10.1002/art.34473
  • 21. Seror R, Bootsma H, Saraux A, Bowman SJ, Theander E et al. Defining disease activity states and clinically meaningful improvement in primary Sjögren’s syndrome with EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient-reported indexes (ESSPRI). Annals of the Rheumatic Diseases 2016; 75 (2): 382-389. doi: 10.1136/ annrheumdis-2014-206008
  • 22. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. Arthritis & Rheumatology 1992; 35 (6): 630- 640. doi: 10.1002/art.1780350606
  • 23. Denysenko T, Annovazzi L, Cassoni P, Melcarne A, Mellai M et al. WNT/β-catenin signaling pathway and downstream modulators in low- and high-grade glioma. Cancer Genomics Proteomics 2016; 13 (1): 31-45.
  • 24. Thorne I, Sutcliffe N. Sjögren’s syndrome. British Journal of Hospital Medicine 2017; 78 (8): 438-442. doi: 10.12968/ hmed.2017.78.8.438
  • 25. Takeda K, Akira S. Toll-like receptors. Current Protocols in Immunology 2015; 109: 14.12.1-14.12.10. doi: 10.1002/0471142735.im1412s109
  • 26. Manoussakis MN, Kapsogeorgou EK. The role of intrinsic epithelial activation in the pathogenesis of Sjögren’s syndrome. Journal of Autoimmunity 2010; 35 (3): 219-224. doi: 10.1016/j. jaut.2010.06.011
  • 27. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing ccr7 for tumor antigen trafficking and priming of t cell immunity in melanoma. Cancer Cell 2016; 30 (2): 324-336. doi: 10.1016/j.ccell.2016.06.003
  • 28. Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Multiple targets of the canonical WNT/β-catenin signaling in cancers. Frontiers in Oncology 2019; 9: 1248. doi: 10.3389/ fonc.2019.01248
  • 29. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH et al. Cbfa1- independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. Journal of Cell Biology 2002; 157 (2): 303-314. doi: 10.1083/jcb.200201089
  • 30. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. The American Journal of Human Genetics 2002; 70 (1): 11-19. doi: 10.1086/338450
  • 31. Li L, Wang Y, Zhang N, Zhang Y, Lin J et al. Heterozygous deletion of LRP5 gene in mice alters profile of immune cells and modulates differentiation of osteoblasts. BioScience Trends 2018; 12 (3): 266-274. doi: 10.5582/bst.2018.01013
  • 32. Kawazoe M, Kaneko K, Shikano K, Kusunoki N, Nanki T et al. Glucocorticoid therapy causes contradictory changes of serum Wnt signaling-related molecules in systemic autoimmune diseases. Clinical Rheumatology 2018; 37 (8): 2169-2178. doi: 10.1007/s10067-017-3689-3
  • 33. Gözel N, Duran F, Yildirim A, Yolbaş S, Önalan E et al. Paricalcitol inhibits Wnt/β-catenin signaling pathway and ameliorates dermal fibrosis in bleomycin induced scleroderma model. Archives of Rheumatology 2017; 33 (3): 288-294. doi: 10.5606/ArchRheumatol.2018.6648
  • 34. Olferiev M, Jacek E, Kirou KA, Crow MK. Novel molecular signatures in mononuclear cell populations from patients with systemic lupus erythematosus. Clinical Immunology 2016; 172: 34-43. doi: 10.1016/j.clim.2016.08.018
  • 35. Pishvaian MJ, Byers SW. Biomarkers of WNT signaling. Cancer Biomarkers 2007; 3 (4-5): 263-274. doi: 10.3233/cbm-2007-34- 510
  • 36. Santiago L, Daniels G, Wang D, Deng FM, Lee P. Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. American Journal of Cancer Research 2017; 7 (6): 1389-1406.
  • 37. Rossini M, Viapiana O, Adami S, Fracassi E, Idolazzi L et al. In patients with rheumatoid arthritis, Dickkopf-1 serum levels are correlated with parathyroid hormone, bone erosions and bone mineral density. Clinical and Experimental Rheumatology 2015; 33 (1): 77-83.
  • 38. Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Seminars in Arthritis and Rheumatism 2011; 41 (2): 170-177. doi: 10.1016/j.semarthrit.2011.01.006
  • 39. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS et al. Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine 2007; 13 (2): 156-163. doi: 10.1038/nm1538
  • 40. Wehmeyer C, Stratis A, Pap T, Dankbar B. The role of the WNT inhibitor sclerostin in rheumatoid arthritis bone/cartilage biology. Annals of the Rheumatic Diseases 2010; 69: 21-22.
  • 41. Gifre L, Ruiz-Gaspà S, Monegal A, Nomdedeu B, Filella X et al. Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 2013; 57 (1): 272-276. doi: 10.1016/j. bone.2013.08.016
  • 42. Zhang L, Ouyang H, Xie Z, Liang ZH, Wu XW. Serum DKK1 level in the development of ankylosing spondylitis and rheumatic arthritis: a meta-analysis. Experimental & Molecular Medicine 2016; 48 (4): e228. doi: 10.1038/emm.2016.12
  • 43. Kwon SR, Lim MJ, Suh CH, Park SG, Hong YS et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatology International 2012; 32 (8): 2523- 2527. doi: 10.1007/s00296-011-1981-0
  • 44. Dovjak P, Dorfer S, Föger-Samwald U, Kudlacek S, Marculescu R et al. Serum levels of sclerostin and dickkopf-1: effects of age, gender and fracture status. Gerontology 2014; 60 (6): 493-501. doi: 10.1159/000358303
  • 45. Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Developmental Biology 2011; 358 (1): 156-167. doi: 10.1016/j.ydbio.2011.07.023
  • 46. Häärä O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I et al Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development 2011; 138 (13): 2681-2691. doi: 10.1242/dev.057711
  • 47. Fernández-Torres J, Pérez-Hernández N, Hernández-Molina G, Martínez-Nava GA, Garrido-Rodríguez D et al. Risk of Wnt/β-catenin signalling pathway gene polymorphisms in primary Sjögren’s syndrome. Rheumatology (Oxford) 2020; 59 (2): 418-425. doi: 10.1093/rheumatology/kez269
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Increased incidence of malignancy in patients with primary hyperparathyroidism

Mustafa KULAKSIZOĞLU, Mustafa CAN, İlker ÇORDAN, Muhammet KOCABAŞ, Melia KARAKÖSE, Hatice ÇALIŞKAN BURGUCU, Feridun KARAKURT

Evaluation of extensively drug-resistant gram-negative bacteremia among solid-organ transplant recipients: a multicenter study

Tufan EGELİ, Güle ÇINAR, Tuğba YANIK YALÇIN, Yaşar BAYINDIR, Alpay ARI, Özlem AZAP, Hatice ÇABADAK, Oya Özlem EREN KUTSOYLU, Elif Mükime SARICAOĞLU, Yasemin TEZER TEKÇE, Adem KÖSE, Filiz KIZILATEŞ, Kübra DEMİR ÖNDER, Hikmet Eda ALIŞKAN, Yeşim UYGUN KIZMAZ, Ebru KURŞUN, Mehmet HABERAL, Yurdagül ALBAY

Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats

Ayşe KÖYLÜ, Berrin Zuhal ALTUNKAYNAK, Burcu DELİBAŞ

Investigation of the effects of propofol/ketamine versus propofol/fentanyl on nauseavomiting administered for sedation in children undergoing magnetic resonance imaging: a prospective randomized double-blinded study

Ayşe ÜLGEY, Hacı Semih GÜRCAN, Özlem ÖZ GERGİN, Sibel SEÇKİN PEHLİVAN, Karamehmet YILDIZ

A new approach to predicting shoulder dystocia: fetal clavicle measurement

Elif TERZİ

The frequency of Achilles and plantar calcaneal spurs in gout patients

Emre BİLGİN, Umut KALYONCU, Ali İhsan ERTENLİ, Emine DURAN

Decreased exercise capacity, strength, physical activity level and quality of life in adult patients with familial Mediterranean fever

Deran OSKAY, Abdurrahman TUFAN, Hasan SATIŞ, Hazan KARADENİZ, Nurten Gizem TORE, Fulden SARİ, Devrim Can SARAÇ, Selin BAYRAM

Predictors of full functional recovery in endovascularly treated patients with aneurysmal subarachnoid hemorrhage

Fatih UZUNKAYA, Ayşegül İDİL SOYLU

Synergistic effect of vancomycin combined with cefotaxime, imipenem, or meropenem against Staphylococcus aureus with reduced susceptibility to vancomycin

Arpasiri SRİSRATTAKARN, Chonthicha CHAİYAPOKE, Sirikarn BOONCHAROEN, Sujintana WONGTHONG, Aroonwadee CHANAWONG, Patcharaporn TİPPAYAWAT, Ratree TAVİCHAKORNTRAKOOL, Aroonlug LULİTANOND

Possible antiapoptotic and neuroprotective effects of magnesium sulphate on retina in a preterm hypoxic-ischemic rat model

Şamil AKTAŞ, Alev CUMBUL, Ünal USLU, Serkan ERDENÖZ, Fahri OVALI, Serhat İMAMOĞLU, Ebru YALIN İMAMOĞLU