The role of IL-6 and osteoprotegerin in bone metabolism in patients with Graves’ disease
The role of IL-6 and osteoprotegerin in bone metabolism in patients with Graves’ disease
Background/aim: Increased bone turnover is a hallmark of hyperthyroidism. The underlying factors of how thyroid hormones affect bone cells are still under the spotlight. Previous studies indicated serum osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and interleukin-6 (IL-6) as mediators of the effect of thyroid hormones on bone metabolism. Ultimately, the present research aimed to examine the association of IL-6 with OPG and RANKL in patients with hyperthyroidism. Materials and methods: We carried out this study with 39 newly diagnosed and untreated Graves’ patients and 43 healthy controls. In addition to routine tests, we measured serum OPG, RANKL, and IL-6 levels. Results: Mean age and sex distribution were similar in both groups. The hyperthyroid group had significantly higher OPG (p = 0.002) and IL-6 (p < 0.001) levels, but RANKL levels were significantly lower in this group (p < 0.001). We found OPG not to correlate with free T4 and T3, while it had a moderate and negative correlation with thyrotropin (TSH) (r = -0.372, p = 0.001). IL-6 had no correlation with OPG but positively correlated with free T4 (r = 0.445, p < 0.001) and free T3 (r = 0.326, p = 0.035). It also negatively correlated with RANKL (r = –0.247, p = 0.033). Conclusion: Maintaining skeletal development and integrity is partially regulated by a normal balance of thyroid hormones. We concluded that increases in serum OPG and IL-6 levels accompanied hyperthyroidism. However, excessive levels of the hormones might cause drops in serum RANKL levels. Our results suggested that OPG, RANKL, and IL-6 might be involved in the cross-talking among immunity, thyroid function, and bone metabolism in the case of hyperthyroidism.
___
- 1. Brent GA. Clinical practice. Graves’ disease. New England Journal of Medicine 2008; 358(24):2594-2605. doi: 10.1056/ NEJMcp0801880
- 2. Brand OJ, Gough SCL. Genetics of thyroid autoimmunity and the role of the TSHR. Molecular and Cellular Endocrinology 2010; 322(1-2):135-143. doi: 10.1016/j.mce.2010.01.013
- 3. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocrine Reviews 2003; 24(6):802-835. doi: 10.1210/er.2002-0020
- 4. Weetman AP, Bright-Thomas R, Freeman M. Regulation of interleukin-6 release by human thyrocytes. Journal of Endocrinology 1990; 127(2):357-361. doi: 10.1677/joe.0.1270357
- 5. Girasole G, Jilka RL, Passeri G, Boswell S, Boder G et al. 17 betaestradiol inhibits interleukin-6 production by bone marrowderived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. Journal of Clinical Investigation 1992; 89(3):883-891. doi: 10.1172/ JCI115668
- 6. Buergi U, Larsen PR. Nuclear triiodothyronine binding in mononuclear leukocytes in normal subjects and obese patients before and after fasting. Journal of Clinical Endocrinology and Metabolism 1982; 54(6):1199-1205. doi: 10.1210/jcem-54-6- 1199
- 7. Lakatos P, Foldes J, Horvath C, Kiss L, Tatrai A et al. Serum interleukin-6 and bone metabolism in patients with thyroid function disorders. Journal of Clinical Endocrinology and Metabolism 1997; 82(1):78-81. doi: 10.1210/jcem.82.1.3641
- 8. Lv LF, Jia HY, Zhang HF, Hu YX. Expression level and clinical significance of IL-2, IL-6 and TGF-β in elderly patients with goiter and hyperthyroidism. European Review for Medical and Pharmacological Sciences 2017; 21(20):4680-4686.
- 9. Anvari M, Khalilzadeh O, Esteghamati A, Momen-Heravi F, Mahmoudi M et al. Graves’ disease and gene polymorphism of TNF-α, IL-2, IL-6, IL-12, and IFN-γ. Endocrine 2010; 37(2):344- 348. doi: 10.1007/s12020-010-9311-y
- 10. Bednarczuk T, Kuryłowicz A, Hiromatsu Y, Kiljańskic J, Telichowska A et al. Association of G-174C polymorphism of the interleukin-6 gene promoter with Graves’ ophthalmopathy. Autoimmunity 2004; 37(3):223-226. doi: 10.1080/0891693042000193320
- 11. Akalin A, Colak O, Alatas O, Efe B. Bone remodelling markers and serum cytokines in patients with hyperthyroidism. Clinical Endocrinology (Oxford) 2002; 57(1):125-129. doi: 10.1046/j.1365-2265.2002.01578.x
- 12. Siddiqi A, Monson JP, Wood DF, Besser GM, Burrin JM. Serum cytokines in thyrotoxicosis. Journal of Clinical Endocrinology and Metabolism 1999; 84(2):435-439. doi: 10.1210/jcem.84.2.5436
- 13. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89(2):309-319. doi: 10.1016/s0092-8674(00)80209-3
- 14. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. Journal of Molecular Medicine (Berlin) 2001; 79(5- 6):243-253. doi: 10.1007/s001090100226
- 15. Hofbauer LC, Schoppet M. Serum measurement of osteoprotegerin--clinical relevance and potential applications. European Journal of Endocrinology 2001; 145(6):681-683. doi: 10.1530/eje.0.1450681
- 16. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine 2011; 17(10):1231-1234. doi: 10.1038/nm.2452
- 17. Kenkre JS, Bassett J. The bone remodelling cycle. Annals of Clinical Biochemistry 2018; 55(3):308-327. doi: 10.1177/0004563218759371
- 18. Bonewald L. Osteocytes as multifunctional cells. Journal of Musculoskeletal & Neuronal Interactions 2006; 6(4):331-333.
- 19. Siddiqi A, Burrin JM, Wood DF, Monson JP. Tri-iodothyronine regulates the production of interleukin-6 and interleukin-8 in human bone marrow stromal and osteoblast-like cells. Journal of Endocrinology 1998; 157(3):453-461. doi: 10.1677/ joe.0.1570453
- 20. Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M et al. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. Journal of Clinical Investigation 2004; 113(3):379-389. doi: 10.1172/JCI19872
- 21. Klaushofer K, Hoffmann O, Gleispach H, Leis HJ, Czerwenka E et al. Bone-resorbing activity of thyroid hormones is related to prostaglandin production in cultured neonatal mouse calvaria. Journal of Bone and Mineral Research 1989; 4(3):305-312. doi: 10.1002/jbmr.5650040304
- 22. Miura M, Tanaka K, Komatsu Y, Suda M, Yasoda A et al. A novel interaction between thyroid hormones and 1,25(OH) (2)D(3) in osteoclast formation. Biochemical and Biophysical Research Communications 2002; 291(4):987-994. doi: 10.1006/ bbrc.2002.6561
- 23. Kanatani M, Sugimoto T, Sowa H, Kobayashi T, Kanzawa M et al. Thyroid hormone stimulates osteoclast differentiation by a mechanism independent of RANKL-RANK interaction. Journal of Cellular Physiology 2004; 201(1):17-25. doi: 10.1002/jcp.20041
- 24. Suda K, Woo JT, Takami M, Sexton PM, Nagai K. Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL. Journal of Cellular Physiology 2002; 190(1):101-108. doi: 10.1002/jcp.10041
- 25. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 2007; 39(2):175-191. doi: 10.3758/bf03193146
- 26. Nagasaki T, Inaba M, Jono S, Hiura Y, Tahara H et al. Increased levels of serum osteoprotegerin in hypothyroid patients and its normalization with restoration of normal thyroid function. European Journal of Endocrinology 2005; 152(3):347-353. doi: 10.1530/eje.1.01870
- 27. Amato G, Mazziotti G, Sorvillo F, Piscopo M, Lalli E et al. High serum osteoprotegerin levels in patients with hyperthyroidism: effect of medical treatment. Bone 2004; 35(3):785-791. doi: 10.1016/j.bone.2004.04.021
- 28. Mochizuki Y, Banba N, Hattori Y, Monden T. Correlation between serum osteoprotegerin and biomarkers of bone metabolism during anti-thyroid treatment in patients with Graves’ disease. Hormone Research 2006; 66(5):236-239. doi: 10.1159/000095068
- 29. Varga F, Spitzer S, Klaushofer K. Triiodothyronine (T3) and 1,25-dihydroxyvitamin D3 (1,25D3) inversely regulate OPG gene expression in dependence of the osteoblastic phenotype. Calcified Tissue International 2004; 74(4):382-387. doi: 10.1007/s00223-003-0033-5
- 30. Hofbauer LC, Kluger S, Kühne CA, Dunstan CR, Burchert A et al. Detection and characterization of RANK ligand and osteoprotegerin in the thyroid gland. Journal of Cellular Biochemistry 2002; 86(4):642-650. doi: 10.1002/jcb.10242
- 31. Özdemir D, Dağdelen S, Usman A. Plasma Osteoprotegerin Levels Before and After Treatment of Thyroid Dysfunctions. Turkish Journal of Endocrinology and Metabolism 2013; 17: 102-7. doi: 10.4274/Tjem.2238
- 32. Botella-Carretero JI, Alvarez-Blasco F, San Millán JL, EscobarMorreale HF. Thyroid hormone deficiency and postmenopausal status independently increase serum osteoprotegerin concentrations in women. European Journal of Endocrinology 2007; 156(5):539-545. doi: 10.1530/EJE-06-0649
- 33. Abe E, Marians RC, Yu W, Wu XB, Ando T et al. TSH is a negative regulator of skeletal remodeling. Cell 2003; 115(2):151-162. doi: 10.1016/s0092-8674(03)00771-2
- 34. Ma R, Morshed S, Latif R, Zaidi M, Davies TF. The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 2011; 21(8):897-906. doi: 10.1089/thy.2010.0457
- 35. Salvi M, Girasole G, Pedrazzoni M, Passeri M, Giuliani N et al. Increased serum concentrations of interleukin-6 (IL-6) and soluble IL-6 receptor in patients with Graves’ disease. Journal of Clinical Endocrinology and Metabolism 1996; 81(8):2976- 2979. doi: 10.1210/jcem.81.8.8768861
- 36. Gianoukakis AG, Khadavi N, Smith TJ. Cytokines, Graves’ disease, and thyroid-associated ophthalmopathy. Thyroid 2008; 18(9):953-958. doi: 10.1089/thy.2007.0405
- 37. Grubeck-Loebenstein B, Buchan G, Chantry D, Kassal H, Londei M et al. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clinical and Experimental Immunology 1989; 77(3):324-330.
- 38. Safley SA, Villinger F, Jackson EH, Tucker-Burden C, Cohen C et al. Interleukin-6 production and secretion by human parathyroids. Clinical and Experimental Immunology 2004; 136(1):145-156. doi: 10.1111/j.1365-2249.2004.02419.x
- 39. Lee SK, Lorenzo JA. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 1999; 140(8):3552-3561. doi: 10.1210/endo.140.8.6887
- 40. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. Journal of Clinical Endocrinology and Metabolism 2001; 86(7):3162-3165. doi: 10.1210/jcem.86.7.7657
- 41. Giusti M, Cecoli F, Ghiara C, Rubinacci A, Villa I et al. Recombinant human thyroid stimulating hormone does not acutely change serum osteoprotegerin and soluble receptor activator of nuclear factor-kappaBeta ligand in patients under evaluation for differentiated thyroid carcinoma. Hormones (Athens) 2007; 6(4):304-313. doi: 10.14310/ horm.2002.1111026
- 42. Kassem M, Mosekilde L, Eriksen EF. Effects of triiodothyronine on DNA synthesis and differentiation markers of normal human osteoblast-like cells in vitro. Biochemistry and Molecular Biology International 1993; 30(4):779-788.