The impact of JAK/STAT inhibitor ruxolitinib on the genesis of lymphoproliferative diseases

The impact of JAK/STAT inhibitor ruxolitinib on the genesis of lymphoproliferative diseases

Background/aim: Ruxolitinib, a JAK/STAT signaling pathway inhibitor targeted drug, has been approved for the controlling of diseasesymptoms and splenomegaly in patients with myeloproliferative neoplastic diseases. Recently, it has been proposed that ruxolitinibinduced JAK/STAT pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas.However, the biological basis and significance of this pharmacobiological adverse event is unknown. The aim of this bioinformaticsstudy is to detect any possible confounding effects of ruxolitinib on the genesis of lymphoproliferative disorders.Materials and methods: The gene expression data were retrieved from the E-MTAB-783 Cancer Genome Project database. Geneexpression data for all available genes in 26 cell lines belonging to various types of lymphomas were chosen for use in this in silicoanalysis.Results: We identified genes that were significant in developing resistance to ruxolitinib in lymphoma cell lines.Conclusion: Based on the results of our present study, ruxolitinib may potentially lead to the pathological expression of the transcriptionfactors important in lymphoma genesis, neoplastic commitment on the progenitor lymphoid cells, inhibition of repressor transcriptionsprotective for lymphoma development, inhibition of apoptosis, promotion of neoplastic proliferation, transcriptional activation, andproliferation of malignant neoplastic B cells.

___

  • 1. Shaker ME, Hazem SH, Ashamallah SA. Inhibition of the JAK/STAT pathway by ruxolitinib ameliorates thioacetamideinduced hepatotoxicity. Food and Chemical Toxicology 2016; 96: 290-301. doi: 10.1016/j.fct.2016.08.018
  • 2. Scott LM. Inhibitors of the JAK/STAT pathway, with a focus on ruxolitinib and similar agents. Communications Chemistry 2018; 17: 107-134. doi: 10.1007/978-3-319-75184-9_6
  • 3. Scott LM, Gandhi MK. Deregulated JAK/STAT signalling in lymphomagenesis, and its implications for the development of new targeted therapies. Blood Reviews 2015; 29: 405-415. doi: 10.1016/j.blre.2015.06.002
  • 4. Groner B, von Manstein V. JAK STAT signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Molecular and Cellular Endocrinology 2017; 451: 1-14. doi: 10.1016/j.mce.2017.05.033
  • 5. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. British Journal of Cancer 2015; 113: 365-371. doi: 10.1038/bjc.2015.233
  • 6. Porpaczy E, Tripolt S, Hoelbl-Kovacic A, Gisslinger B, BagoHorvath Z et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018; 132: 694-706. doi: 10.1182/blood-2017-10-810739
  • 7. Diamantidis MD. Ruxolitinib for myelofibrosis. New England Journal of Medicine 2012; 366: 2031-2032. doi: 10.1056/ NEJMc1203704
  • 8. Soyer N, Haznedaroğlu İC, Cömert M, Çekdemir D, Yılmaz M et al. Multicenter retrospective analysis of Turkish patients with chronic myeloproliferative neoplasms. Turkish Journal of Hematology 2017; 34: 27-33. doi: 10.4274/tjh.2016.0005
  • 9. Eliaçık E, Işık A, Aksu S, Üner A, Büyükaşık Y et al. Pharmacobiological approach for the clinical development of ruxolitinib in myeloproliferative neoplasms. Turkish Journal of Hematology 2015; 32: 163-167. doi: 10.4274/tjh.2013.0265
  • 10. Haznedaroglu IC. Ruxolitinib for myelofibrosis. New England Journal of Medicine 2012; 366: 2032. doi: 10.1056/ NEJMc1203704
  • 11. Saydam G. Efficacy and safety of ruxolitinib in 132 Turkish patients with myelofibrosis: a multicenter and retrospective analysis. Clinical Lymphoma, Myeloma and Leukemia 2018; 18: 265. doi: 10.1016/j.clml.2018.07.180
  • 12. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570-575. doi: 10.1038/nature11005
  • 13. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research 2010; 38: 214-220. doi: 10.1093/nar/gkq537
  • 14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Research 2003; 13: 2498-2504. doi: 10.1101/gr.1239303
  • 15. Croft D, Mundo AF, Haw R, Milacic M, Weiser J et al. The Reactome Pathway Knowledgebase. Nucleic Acids Research 2014; 42: 472-477. doi: 10.1093/nar/gkt1102
  • 16. Pérez C, González-Rincón J, Onaindia A, Almaráz C, GarcíaDíaz N et al. Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma. Haematologica 2015; 100: 450-453. doi: 10.3324/ haematol.2015.132837
  • 17. Waldmann TA, Chen J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annual Review of Immunology 2017; 35: 533-550. doi: 10.1146/annurev-immunol-110416-120628
  • 18. Buyukasik Y, Haznedaroğlu İ, Ozet G, Ar C, Ozcan M et al. The modelled effectiveness of ruxolitinib on survival in polycythemia patients with hydroxyurea resistance/intolerance in Turkey. Value in Health 2017; 20: 545. doi: 10.1016/j. jval.2017.08.832
  • 19. Buyukasik Y, Haznedaroğlu İ, Ozet G, Ar C, Ozcan M et al. Epidemiological estimates and treatment practice pattern in polycythemia vera patients in Turkey: results based on an expert panel. Value in Health 2017; 20: 546. doi: 10.1016/j. jval.2017.08.839
  • 20. Shimosaki S, Nakahata S, Ichikawa T, Kitanaka A, Kameda T et al. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochemical and Biophysical Research Communications 2017; 485: 144-151. doi: 10.1016/j. bbrc.2017.02.039
  • 21. Rizzo K, Stetler-Stevenson M, Wilson W, Yuan CM. Novel CD19 expression in a peripheral T cell lymphoma: a flow cytometry case report with morphologic correlation. Cytometry Part B Clinical Cytometry 2009; 76: 142-149. doi: 10.1002/cyto.b.20442
  • 22. Barakzai MA, Pervez S. CD20 positivity in classical Hodgkin’s lymphoma: diagnostic challenge or targeting opportunity. Indian Journal of Pathology and Microbiology 2009; 52: 6-9. doi: 10.4103/0377-4923.44952
  • 23. Hashimoto Y, Yokohama A, Saitoh A, Nakahashi H, Toyama K et al. Prognostic importance of the soluble form of IL-2 receptor (sIL-2R) and its relationship with surface expression of IL-2R (CD25) of lymphoma cells in diffuse large B-cell lymphoma treated with CHOP-like regimen with or without rituximab: a retrospective analysis of 338 cases. Journal of Clinical Experimental Hematopathology 2013; 53: 197-205. doi: 10.3960/jslrt.53.197
  • 24. Fu XH, Wang S Sen, Huang Y, Xiao J, Zhai LZ et al. Prognostic significance of CD20 expression in Hodgkin and ReedSternberg cells of classical Hodgkin’s Lymphoma. Chinese Journal of Cancer 2008; 27: 1197-1203.
  • 25. Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 2009; 113: 4885-4893. doi: 10.1182/blood-2008-08-175208
  • 26. Fujiwara SI, Muroi K, Tatara R, Matsuyama T, Ohmine K et al. Clinical features of de novo CD25-positive follicular lymphoma. Leukemia Lymphoma 2014; 55: 307-313. doi: 10.3109/10428194.2013.806658
  • 27. Thorns C, Kalies K, Fischer U, Höfig K, Krokowski M et al. Significant high expression of CD23 in follicular lymphoma of the inguinal region. Histopathology 2007; 50: 716-719. doi: 10.1111/j.1365-2559.2007.02678.x
  • 28. Toji T, Takata K, Sato Y, Miyata-Takata T, Hayashi E et al. Serum level of soluble interleukin-2 receptor correlates with CD25 expression in patients with T lymphoblastic lymphoma. Journal of Clinical Pathology 2015; 68: 622-627. doi: 10.1136/ jclinpath-2015-202934
  • 29. Carulli G, Cannizzo E, Zucca A, Buda G, Orciuolo E et al. CD45 expression in low-grade B-cell non-Hodgkin’s lymphomas. Leukemia Research 2008; 32: 263-267. doi: 10.1016/j.leukres.2007.06.002
  • 30. Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP-1 induces survivin expression to inhibit cell apoptosis through the NF-κB and PI3K/Akt signaling pathways in nasal NK/T-cell lymphoma. Oncology Reports 2015; 33: 2253-2260. doi: 10.3892/ or.2015.3847
  • 31. Hartley C, Vaughan JW, Jarzembowski J, Kroft SH, Hosking P et al. CD30 expression in monomorphic posttransplant lymphoproliferative disorder, diffuse large b-cell lymphoma correlates with greater regulatory t-cell infiltration. Am J Clinical Pathology 2017; 148: 485-493. doi: 10.1093/ajcp/ aqx097
  • 32. Feng Y, Rao H, Lei Y, Huang Y, Wang F et al. CD30 expression in extranodal natural killer/T-cell lymphoma, nasal type among 622 cases of mature T-cell and natural killer-cell lymphoma at a single institution in South China. Chinese Journal of Cancer 2017; 36: 1-9. doi: 10.1186/s40880-017-0212-9
  • 33. Malysz J, Erdman P, Klapper J, Zhu J, Creer M et al. Clinical implications of CD30 expression in aggressive B-cell lymphomas. Clinical Lymphoma, Myeloma and Leukemia 2016; 16: 429-433. doi: 10.1016/j.clml.2016.04.011
  • 34. Onaindia A, Martínez N, Montes-Moreno S, Almaraz C, Rodríguez-Pinilla SM et al. CD30 expression by B and T cells: a frequent finding in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma-not otherwise specified. American Journal of Surgical Pathology 2016; 40: 378-385. doi: 10.1097/PAS.0000000000000571
  • 35. Yao X, Teruya-Feldstein J, Raffeld M, Sorbara L, Jaffe ES. Peripheral T-cell lymphoma with aberrant expression of CD79a and CD20: a diagnostic pitfall. Modern Pathology 2001; 14: 105-110. doi: 10.1038/modpathol.3880265
  • 36. Wang L, Wang H, Li P, Lu Y, Xia Z et al. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Annals of Hematology 2015; 94: 1381-1388. doi: 10.1007/s00277-015- 2359-2
  • 37. Ma XB, Zheng Y, Yuan HP, Jiang J, Wang YP. CD43 expression in diffuse large B-cell lymphoma, not otherwise specified: CD43 is a marker of adverse prognosis. Human Pathology 2015; 46: 593-599. doi: 10.1016/j.humpath.2015.01.002
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Burcu AKMAN, Hatice Ayça Ata KORKMAZ, Ahmet SARI

Characterization and haplotype study of 6 novel STR markers related to the KCNQ1 gene in heterogeneous cardiovascular disorders in the Iranian population

Zahra ZAFARI, Morteza KARIMIPOOR, Sirous ZEINALI, Azam AMIRIAN, Alireza KORDAFSHARI, Zohreh SHARIFI

Reference ranges for serum immunoglobulin (IgG, IgA, and IgM) and IgG subclass levels in healthy children

Hasibe ARTAÇ, Hülya ÖZDEMİR, Hatice TÜRK DAĞI, Ayça EMSEN, Rumeysa Olcay BAYRAM

Investigation of the relationship between ischemic stroke and endothelial nitric oxide synthase gene polymorphisms [G894T, intron 4 VNTR and T786C]

Serhat TOKGÖZ, Mahmut Selman YILDIRIM, Mehmet Sinan İYİSOY, Süleyman Ömer ANLIAÇIK, Ayşe GÜL ZAMANİ

Antibiotic resistance pattern and spa types of Staphylococcus aureus strains isolated from food business and hospital kitchen employees in Çanakkale, Turkey

Nesrin ÇAKICI, Nükhet Nilüfer DEMİREL ZORBA, Alper AKÇALI

Assessment of cardiac and vessel functions in childhood psoriasis

Figen AKALIN, Seçkin GENÇOSMANOĞLU, Berna ŞAYLAN ÇEVİK, Elif EROLU, Tülin ERGUN

Haci Hasan YETER, Tolga YILDIRIM, Nesrin Damla EYÜPOĞLU, Tural PASAYEV, Abdullah Tarik ASLAN, Sila ÇETİK, Ömer Faruk AKÇAY, Arzu Topeli İSKİT, Mustafa ARICI

Optimum recording time of routine electroencephalogram for adults with epilepsy

Yılmaz ÇETİNKAYA, Kemal TUTKAVUL

Kemal TUTKAVUL, Yilmaz ÇETİNKAYA

Dilek KARAMANLIOĞLU, Murat DİZBAY