The effect of different levels of pneumoperitoneum pressures on regional cerebral oxygenation during robotic assisted laparoscopic prostatectomy

The effect of different levels of pneumoperitoneum pressures on regional cerebral oxygenation during robotic assisted laparoscopic prostatectomy

Background/aim: This study aimed to evaluate the effect of low- and high-pressure pneumoperitoneum pressures applied during robotic-assisted laparoscopic prostatectomy (RALP) using near-infrared spectroscopy (NIRS) on regional cerebral oxygenation saturation (rSO2). Materials and methods: The prospective, comparative, and observational study included patients aged 18–80 years, with the American Society of Anesthesiologists (ASA) physical status I-II, who would undergo elective RALP. The patients were divided into two groups (12 mmHg of pneumoperitoneum pressure group, n=22 and 15 mmHg of pneumoperitoneum pressure group, n=23). Patients’ demographic data, durations of anesthesia, surgery, pneumoperitoneum, and Trendelenburg position, intraoperative estimated blood loss, fluid therapy, urine output, hemodynamic and respiratory data, and rSO2values were recorded at regular intervals. Results: The rSO2values increased significantly during the pneumoperitoneum combined with steep Trendelenburg position (from t3to t6) and at the end of the surgery (t7) in both groups, compared to the values 5 min after the onset of pneumoperitoneum in the supine position (t2) (P < 0.05), but no statistical significance was observed between the two groups. No cerebral desaturation was observed in any of our patients. Hemodynamic and respiratory parameters were preserved in both groups. The blood lactate levels were significantly higher in patients operated at high-pressure pneumoperitoneum, compared to those with low-pressure pneumoperitoneum (P < 0.05). Conclusion: We believe that low-pressure pneumoperitoneum, especially in robotic surgeries, such as robotic-assisted laparoscopic prostatectomy (RALP), can be applied safely.Key words: Near-infrared spectroscopy, pneumoperitoneum, prostatectomy, robotic-assisted surgery, trendelenburg position

___

  • 1. Matanes E, Weissman A, Rivlin A, Lauterbach R, Amit A et al. Effects of pneumoperitoneum and the steep trendelenburg position on heart rate variability and cerebral oxygenation during robotic sacrocolpopexy. Journal of Minimally Invasive Gynecology 2018; 25 (1): 70-75. doi: 10.1016/j.jmig.2017.07.009
  • 2. Rohloff M, Cicic A, Christensen C, Maatman TK, Lindberg J et al. Reduction in postoperative ileus rates utilizing lower pressure pneumoperitoneum in robotic-assisted radical prostatectomy. Journal of Robotic Surgery 2019; 13 (5): 671-674. doi: 10.1007/s11701-018-00915-w
  • 3. Christensen CR, Maatman TK, Maatman TJ, Tran TT. Examining clinical outcomes utilizing low-pressure pneumoperitoneum during robotic-assisted radical prostatectomy. Journal of Robotic Surgery 2016; 10 (3): 215-219. doi: 10.1007/s11701-016-0570-3
  • 4. Moerman A, De Hert S. Cerebral oximetry: the standard monitor of the future? Current Opinion in Anaesthesiology 2015; 28 (6): 703-709. doi: 10.1097/ACO.0000000000000256
  • 5. Ozgun A, Sargin A, Karaman S, Gunusen I, Alper I et al. The relationship between the Trendelenburg position and cerebral hypoxia inpatients who have undergone robot-assisted hysterectomy and prostatectomy. Turkish Journal of Medical Sciences 2017; 47 (6): 1797-1803. doi: 10.3906/sag-1704-159
  • 6. Doe A, Kumagai M, Tamura Y, Sakai A, Suzuki K. A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic-assisted laparoscopic prostatectomy. Journal of Anesthesia 2016; 30 (6): 949-955. doi: 10.1007/s00540-016-2241-y
  • 7. Casati A, Spreafico E, Putzu M, Fanelli G. New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anestesiologica 2006; 72 (7-8): 605-625.
  • 8. Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesthesia & Analgesia 2005; 101 (3): 740-747, table of contents. doi: 10.1213/01. ane.0000166974.96219.cd
  • 9. Green DW. A retrospective study of changes in cerebral oxygenation using a cerebral oximeter in older patients undergoing prolonged major abdominal surgery. European Journal of Anaesthesiology 2007; 24 (3): 230-234. doi: 10.1017/ S0265021506001645
  • 10. Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. Journal of Cardiothoracic and Vascular Anesthsia 2004; 18 (5): 552-558. doi: 10.1053/j.jvca.2004.07.007
  • 11. Dunham CM, Sosnowski C, Porter JM, Siegal J, Kohli C. Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patient: a pilot study. The Journal of Trauma and Acute Care Surgery 2002; 52 (1): 40-46. doi: 10.1097/00005373-200201000-00009
  • 12. Cox RM, Jamgochian GC, Nicholson K, Wong JC, Namdari S et al. The effectiveness of cerebral oxygenation monitoring during arthroscopic shoulder surgery in the beach chair position: a randomized blinded study. Journal of Shoulder and Elbow Surgery 2018; 27 (4): 692-700. doi: 10.1016/j.jse.2017.11.004
  • 13. Hu T, Collin Y, Lapointe R, Carrier FM, Massicotte L et al. Preliminary experience in combined somatic and cerebral oximetry monitoring in liver transplantation. Journal of Cardiothoracic and Vascular Anesthsia 2018; 32 (1): 73-84. doi: 10.1053/j.jvca.2017.07.019
  • 14. Closhen D, Treiber AH, Berres M, Sebastiani A, Werner C et al. Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: A clinical observational study. European Journal of Anaesthesiology 2014; 31 (2): 104-109. doi: 10.1097/ EJA.0000000000000000
  • 15. Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R et al. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. European Journal of Anaesthesiology 2007; 24 (1): 59- 65. doi: 10.1017/S0265021506001025
  • 16. Baraka AS, Nawfal M, El-Khatib M, Haroun-Bizri S. Regional cerebral oximetry after oxygen administration. British Journal of Anaesthesia 2005; 95 (5): 720. doi: 10.1093/bja/aei608
  • 17. Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiologica Scandinavica 2009; 53 (7): 895-899. doi: 10.1111/j.1399-6576.2009.01991.x
  • 18. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Annals of Internal Medicine 2007; 147 (8): 573-577. doi: 10.7326/0003-4819-147-8-200710160-00010
  • 19. Karaoren GY, Bakan N, Yuruk CT, Cetinkaya AO. Effects of bowel preparation and fluid restriction in robot-assisted radical prostatectomy patients. Turkish Journal of Anaesthesiology and Reanimation 2015; 43 (2): 100-105. doi: 10.5152/ TJAR.2014.57704
  • 20. Kumagai M, Ogawa S, Doe A, Suzuki K. Cerebral oxygenation measured by near-infrared spectroscopy and jugular vein oxygen saturation during robotic-assisted laparoscopic radical prostatectomy under total intravenous anaesthesia. The International Journal of Medical Robotics and Computer Assisted Surgery 2015; 11 (3): 302-307. doi: 10.1002/rcs.1629
  • 21. Halverson A, Buchanan R, Jacobs L, Shayani V, Hunt T et al. Evaluation of mechanism of increased intracranial pressure with insufflation. Surgical Endoscopy 1998; 12 (3): 266-269. doi: 10.1007/s004649900648
  • 22. Lovell AT, Marshall AC, Elwell CE, Smith M, Goldstone JC. Changes in cerebral blood volume with changes in position in awake and anesthetized subjects. Anesthesia & Analgesia 2000; 90 (2): 372-376. doi: 10.1097/00000539-200002000-00025
  • 23. Smith AL, Wollman H. Cerebral blood flow and metabolism: effects of anesthetic drugs and techniques. Anesthesiology 1972; 36 (4): 378-400. doi: 10.1097/00000542-197204000- 00015
  • 24. Kalmar AF, Foubert L, Hendrickx JF, Mottrie A, Absalom A et al. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. British Journal of Anaesthesia 2010; 104 (4): 433-439. doi: 10.1093/ bja/aeq018
  • 25. Lee JR, Lee PB, Do SH, Jeon YT, Lee JM et al. The effect of gynaecological laparoscopic surgery on cerebral oxygenation. Journal of International Medical Research 2006; 34 (5): 531- 536. doi: 10.1177/147323000603400511
  • 26. Ekici Y, Bozbas H, Karakayali F, Salman E, Moray G et al. Effect of different intra-abdominal pressure levels on QT dispersion in patients undergoing laparoscopic cholecystectomy. Surgical Endoscopy 2009; 23 (11): 2543-2549. doi: 10.1007/s00464-009- 0388-4
  • 27. Vlot J, Wijnen R, Stolker RJ, Bax K. Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure. Surgical Endoscopy 2013; 27 (5): 1668- 1673. doi: 10.1007/s00464-012-2654-0
  • 28. Hua J, Gong J, Yao L, Zhou B, Song Z. Low-pressure versus standard-pressure pneumoperitoneum for laparoscopic cholecystectomy: a systematic review and meta-analysis. The American Journal of Surgery 2014; 208 (1): 143-150. doi: 10.1016/j. amjsurg.2013.09.027
  • 29. Yasir M, Mehta KS, Banday VH, Aiman A, Masood I et al. Evaluation of post operative shoulder tip pain in low pressure versus standard pressure pneumoperitoneum during laparoscopic cholecystectomy. The Surgeon 2012; 10 (2): 71-74. doi: 10.1016/j.surge.2011.02.003
  • 30. Yoo YC, Kim NY, Shin S, Choi YD, Hong JH et al. Correction: the ıntraocular pressure under deep versus moderate neuromuscular blockade during low-pressure robot assisted laparoscopic radical prostatectomy in a randomized trial. PLoS One 2018; 13 (10): e0206339. doi: 10.1371/journal.pone.0206339
  • 31. Barrio J, Errando CL, Garcia-Ramon J, Selles R, San Miguel G et al. Influence of depth of neuromuscular blockade on surgical conditions during low-pressure pneumoperitoneum laparoscopic cholecystectomy: a randomized blinded study. Journal of Clinical Anesthesia 2017; 42: 26-30. doi: 10.1016/j. jclinane.2017.08.005
  • 32. Song C, Alijani A, Frank T, Hanna G, Cuschieri A. Elasticity of the living abdominal wall in laparoscopic surgery. Journal of Biomechanics 2006; 39 (3): 587-591. doi: 10.1016/j.jbiomech.2004.12.019
  • 33. Neudecker J, Sauerland S, Neugebauer E, Bergamaschi R, Bonjer HJ et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surgical Endoscopy 2002; 16 (7): 1121-1143. doi: 10.1007/s00464-001-9166-7
  • 34. Taura P, Lopez A, Lacy AM, Anglada T, Beltran J et al. Prolonged pneumoperitoneum at 15 mmHg causes lactic acidosis. Surgical Endoscopy 1998; 12 (3): 198-201. doi: 10.1007/ s004649900633
  • 35. Ortiz-Oshiro E, Mayol J, Aparicio Medrano JC, Sanjuan Garcia MA, Alvarez Fernandez-Represa J. Lactate metabolism during laparoscopic cholecystectomy: comparison between CO2 pneumoperitoneum and abdominal wall retraction. World Journal of Surgery 2001; 25 (8): 980-984. doi: 10.1007/s00268- 001-0066-8
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Covid-19 scientific publications from Turkey

Rafiye ÇİFTÇİLER, Abdurrahman TUFAN, Mehmet Akif ÖZTÜRK, İbrahim C. HAZNEDAROĞLU

Prognostic value of the C-reactive protein to albumin ratio in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction

Mehmet Mustafa CAN, Özgür SÖĞÜT, Tarık AKDEMİR

Comparison of local infiltration analgesia and interscalene block for postoperative pain management in shoulder arthroscopy: a prospective randomized controlled trial

Semih BAŞKAN, Güzelali ÖZDEMİR, Alper DEVECİ, Olgun BİNGÖL, Enver KILIÇ, Emrah ARSLANTAŞ

SARS-CoV-2 associated rhabdomyolysis in 32 patients

JOSEF FINSTERER, FULVIO SCORZA

Peripheral blood soluble elastin and elastase as auxiliary diagnostic indicators for coronary artery ectasia

Siwen LIANG, Huiqiang ZHAO, Ruifeng LIU, Qianqian SHENG

Fetal US and MRI in detection of craniospinal anomalies with postnatal correlation: single-center experience

İlker EYÜBOĞLU, Gülseren DİNÇ

The clinical impact of the COVID-19 pandemic on daily urological practice: first 3-month multicenter results from İstanbul

Selçuk ERDEM, Faruk ÖZCAN, Ömer SARILAR, Faruk ÖZGÖR, Mehmet Çağlar ÇAKICI, Ayberk İPLİKÇİ, Gökhan ATIŞ, Asıf YILDIRIM, Alper ÖTÜNÇTEMUR, Mustafa Zafer TEMİZ, Ahmet Yaser MÜSLÜMANOĞLU, Eyüp Veli KÜÇÜK, Alper Kerem AKSOY, Murat ÖZER, İsmail ULUS, Enes DEĞİRMENCİ, Reşat AYDIN

Is microRNA 1910-3p (miR-1910-3p) a really distinctive marker for psoriasis?

Kuyaş HEKİMLER ÖZTÜRK, Selma KORKMAZ, İjlal ERTURAN, Havva Hilal AYVAZ, Mehmet YILDIRIM, Hikmet ORHAN, Melek KARABACAK

Current community transmission and future perspectives on the COVID-19 process

Seyhan TÜRK, Ümit Yavuz MALKAN, Can TÜRK, Elif Sena TEMİRCİ, Mustafa Çağrı PEKER, İbrahim Celalettin HAZNEDAROĞLU

Impact of fetal brain tissue derived mesenchymal stem cell and fibrin glue on facial nerve crash injury

Gülistan Sanem SARIBAŞ, Sevilay KARAHAN, Güleser SAYLAM, Ömer BAYIR, Mehmet Hakan KORKMAZ, Kemal KESEROĞLU, Bülent ÖCAL, Emel ÇADALLI TATAR, Tuğba KARAGÖZ, Ferda ALPASLAN PINARLI, Candan ÖZOĞUL