Review of the effect of 3D medical printing and virtual reality on urology training with ‘MedTRain3DModsim’ Erasmus + European Union Project

Review of the effect of 3D medical printing and virtual reality on urology training with ‘MedTRain3DModsim’ Erasmus + European Union Project

Background/aim: It is necessary to incorporate novel training modalities in medical education, especially in surgical fields, because ofthe limitations of cadaveric training. Traditional medical education has many drawbacks, such as residency working hour restrictions,patient safety conflicts with the learning needs, and the lack of hands-on workshops. The MedTRain3DModsim Project aimed toproduce 3-dimensional (3D) medical printed models, simulations, and innovative applications for every level of medical training usingnovel worldwide technologies. It was aimed herein to improve the interdisciplinary and transnational approaches, and accumulateexisting experience for medical education, postgraduate studies, and specialty training.Materials and methods: This project focused on models of solid organs and the urinary system, including the kidney, prostate, ureter,and liver. With 3D medical printing, it is possible to produce a body part from inert materials in just a few hours with the standardizationof medical 3D modeling.Results: The target groups of this project included medical students and residents, graduate students from engineering departmentswho needed medical education and surgical training, and medical researchers interested in health technology or clinical and surgicalanatomy.Conclusion: It was also intended to develop a novel imaging platform for education and training by reevaluating the existing data usingnew software and 3D modalities. Therefore, it was believed that our methodology could be implemented in all related medical fields.

___

  • 1. Aggarwal S, Choudhury E, Ladha S, Kapoor PM, Kiran U. Simulation in cardiac catheterization laboratory: Need of the hour to improve the clinical skills. Annals of Cardiac Anaesthesia 2016; 19 (3): 521-6. doi: 10.4103/0971- 9784.185548
  • 2. Hasan T. Is dissection humane? Journal of Medical Ethics and History of Medicine 2011; 4: 4.
  • 3. Hildebrandt S. Capital punishment and anatomy: history and ethics of an ongoing association. Clinical Anatomy 2008; 21 (1): 5-14.
  • 4. Rodriguez-Paz JM, Kennedy M, Salas E, Wu AW, Sexton JB et al. Beyond “see one, do one, teach one”: toward a different training paradigm. Quality and Safety in Health Care 2009; 18 (1): 63-8. doi: 10.1136/qshc.2007.023903
  • 5. Aydin A, Raison N, Khan MS, Dasgupta P, Ahmed K. Simulation-based training and assessment in urological surgery. Nature Reviews Urology 2016; 13 (9): 503-19. doi: 10.1038/nrurol.2016.147
  • 6. Rodgers A, Trinchieri A, Ather MH, Buchholz N; U-Merge Scientific Office. Vision for the future on urolithiasis: research, management, education and training-some personal views. Urolithiasis 2018; doi: 10.1007/s00240-018-1086-2
  • 7. Sarmah P, Voss J, Ho A, Veneziano D, Somani B. Low vs. high fidelity: the importance of ‘realism’ in the simulation of a stone treatment procedure. Current Opinion in Urology 2017; 27 (4): 316-322. doi: 10.1097/MOU.0000000000000401
  • 8. Khan R, Aydin A, Khan MS, Dasgupta P, Ahmed K. Simulationbased training for prostate surgery. British Journal of Urology International 2015; 116 (4): 665-74. doi: 10.1111/bju.12721
  • 9. Viswaroop SB, Gopalakrishnan G, Kandasami SV. Role of transurethral resection of the prostate simulators for training in transurethral surgery. Current Opinion in Urology 2015; 25 (2): 153-7. doi: 10.1097/MOU.0000000000000141
  • 10. Brunckhorst O, Aydin A, Abboudi H, Sahai A, Khan MS et al. Simulation-based ureteroscopy training: a systematic review. Journal of Surgical Education 2015; 72 (1): 135-43. doi: 10.1016/j.jsurg.2014.07.003
  • 11. Noureldin YA, Andonian S. Simulation for percutaneous renal access: Where are we? Journal of Endourology 2017; 31 (S1): S10-S19. doi: 10.1089/end.2016.0587
  • 12. Nataraja RM, Webb N, Lopez PJ. Simulation in paediatric urology and surgery, Part 2: An overview of simulation modalities and their applications. Journal of Pediatric Urology 2018; 14 (2): 125-131. doi: 10.1016/j.jpurol.2017.12.009
  • 13. Youssef RF, Spradling K, Yoon R, Dolan B, Chamberlin J et al. Applications of three-dimensional printing technology in urological practice. British Journal of Urology International 2015; 116 (5): 697-702. doi: 10.1111/bju.13183
  • 14. Kim GB, Lee S, Kim H, Yang DH, Kim YH et al. Threedimensional printing: Basic principles and applications in medicine and radiology. Korean Journal of Radiology 2016; 17 (2): 182-97. doi: 10.3348/kjr.2016.17.2.182
  • 15. Parikh N, Sharma P. Three-dimensional printing in urology: History, current applications, and future directions. Urology 2018; 121: 3-10. doi: 10.1016/j.urology.2018.08.004
  • 16. Colaco M, Igel DA, Atala A. The potential of 3D printing in urological research and patient care. Nature Reviews Urology 2018; 15 (4): 213-221. doi: 10.1038/nrurol.2018.6
  • 17. Özgür BC, Ayyıldız A. 3D printing in urology: Is it really promising? Turkish Journal of Urology 2018; 44 (1): 6-9. doi: 10.5152/tud.2018.20856
  • 18. Porpiglia F, Amparore D, Checcucci E, Autorino R, Manfredi M et al.; for ESUT Research Group. Current use of threedimensional model technology in urology: A road map for personalised surgical planning. European Urology Focus 2018; 4 (5): 652-656. doi: 10.1016/j.euf.2018.09.012
  • 19. Manning TG, O’Brien JS, Christidis D, Perera M, Coles-Black J et al. Three dimensional models in uro-oncology: a future built with additive fabrication. World Journal of Urology 2018; 36 (4): 557-563. doi: 10.1007/s00345-018-2201-2
  • 20. Adams F, Qiu T, Mark A, Fritz B, Kramer L et al. Soft 3D-printed phantom of the human kidney with collecting system. Annals of Biomedical Engineering 2017; 45 (4): 963-972. doi: 10.1007/ s10439-016-1757-5
  • 21. Atalay HA, Ülker V, Alkan İ, Canat HL, Özkuvancı Ü et al. Impact of three-dimensional printed pelvicaliceal system models on residents’ understanding of pelvicaliceal system anatomy before percutaneous nephrolithotripsy surgery: A pilot study. Journal of Endourology 2016; 30 (10): 1132-1137.
  • 22. Atalay HA, Canat HL, Ülker V, Alkan İ, Özkuvanci Ü et al. Impact of personalized three-dimensional -3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. International Brazilian Journal of Urology 2017; 43 (3): 470- 475. doi: 10.1590/S1677-5538.IBJU.2016.0441
  • 23. Bernhard JC, Isotani S, Matsugasumi T, Duddalwar V, Hung AJ et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World Journal of Urology 2016; 34 (3): 337-45. doi: 10.1007/s00345-015-1632-2
  • 24. Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. Journal of Endourology 2017; 31 (12): 1314-1320. doi: 10.1089/end.2017.0366
  • 25. Glybochko PV, Rapoport LM, Alyaev YG, Sirota ES, Bezrukov EA et al. Multiple application of three-dimensional soft kidney models with localized kidney cancer: A pilot study. Urologia 2018; 85 (3): 99-105. doi: 10.1177/0391560317749405
  • 26. Golab A, Smektala T, Kaczmarek K, Stamirowski R, Hrab M et al. Laparoscopic partial nephrectomy supported by training involving personalized silicone replica poured in threedimensional printed casting mold. Journal of Laparoendoscopic and Advanced Surgical Techniques and Videoscopy 2017; 27 (4): 420-422. doi: 10.1089/lap.2016.0596
  • 27. Knoedler M, Feibus AH, Lange A, Maddox MM, Ledet E et al. Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 2015; 85 (6): 1257- 61. doi: 10.1016/j.urology.2015.02.053
  • 28. Lee H, Nguyen NH, Hwang SI, Lee HJ, Hong SK et al. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. International Brazilian Journal of Urology 2018; 44 (5): 952-957. doi: 10.1590/S1677-5538.IBJU.2018.0162
  • 29. Monda SM, Weese JR, Anderson BG, Vetter JM, Venkatesh R et al. Development and validity of a silicone renal tumor model for robotic partial nephrectomy training. Urology 2018; 114: 114- 120. doi: 10.1016/j.urology.2018.01.030
  • 30. Uwechue R, Gogalniceanu P, Kessaris N, Byrne N, Chandak P et al. A novel 3D-printed hybrid simulation model for roboticassisted kidney transplantation (RAKT). Journal of Robotic Surgery 2018; 12 (3): 541-544. doi: 10.1007/s11701-018-0780-y
  • 31. Wake N, Rosenkrantz AB, Huang R, Park KU, Wysock JS et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Printing in Medicine 2019; 5 (1): 4. doi: 10.1186/s41205-019-0041-3
  • 32. Mouraviev V, Klein M, Schommer E, Thiel DD, Samavedi S et al. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules. Journal of Robotic Surgery 2016; 10 (1): 49-56. doi: 10.1007/s11701-015-0540-1
  • 33. Shee K, Koo K, Wu X, Ghali FM, Halter RJ et al. A novel ex vivo trainer for robotic vesicourethral anastomosis. Journal of Robotic Surgery 2019. doi: 10.1007/s11701-019-00926-1
  • 34. Zhang J, Zhang P, Wu L, Su J, Shen J et al. Application of an individualized and reassemblable 3D printing navigation template for accurate puncture during sacral neuromodulation. Neurourology and Urodynamics 2018; 37 (8): 2776-2781. doi: 10.1002/nau.23769
  • 35. Lovegrove CE, Abe T, Aydin A, Veneziano D, Sarica K et al. Simulation training in upper tract endourology: myth or reality? Minerva Urologica e Nefrologica 2017; 69 (6): 579-588. doi: 10.23736/S0393-2249.17.02873-9
  • 36. Clements MB, Morrison KY, Schenkman NS. Evaluation of laparoscopic curricula in American urology residency training: A 5-year update. Journal of Endourology 2016; 30 (3): 347-53. doi: 10.1089/end.2015.0561
  • 37. Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: Partial nephrectomy. Journal of Urology 2015; 194 (2): 520-6. doi: 10.1016/j.juro.2015.02.2949
  • 38. Yamanaka H, Makiyama K, Osaka K, Nagasaka M, Ogata M et al. Measurement of the physical properties during laparoscopic surgery performed on pigs by using forceps with pressure sensors. Advances in Urology 2015; 2015: 495308. doi: 10.1155/2015/495308
  • 39. Noureldin YA, Fahmy N, Anidjar M, Andonian S. Is there a place for virtual reality simulators in assessment of competency in percutaneous renal access? World Journal of Urology 2016; 34 (5): 733-9. doi: 10.1007/s00345-015-1652-y
  • 40. Parkhomenko E, Yoon R, Okhunov Z, Patel RM, Dolan B et al. Multi-institutional evaluation of producing and testing a novel 3D-printed laparoscopic trainer. Urology 2019; 124: 297-301. doi: 10.1016/j.urology.2018.06.034
  • 41. Neumann E, Mayer J, Russo GI, Amend B, Rausch S et al. Transurethral resection of bladder tumors: Next-generation virtual reality training for surgeons. European Urology Focus 2018. pii: S2405-4569(18)30101-9. doi: 10.1016/j.euf.2018.04.011
  • 42. Schulz GB, Grimm T, Buchner A, Jokisch F, Casuscelli J et al. Validation of a high-end virtual reality simulator for training transurethral resection of bladder tumors. Journal of Surgical Education 2019; 76 (2): 568-577. doi: 10.1016/j. jsurg.2018.08.001
  • 43. Tjiam IM, Berkers CH, Schout BM, Brinkman WM, Witjes JA et al. Evaluation of the educational value of a virtual reality TURP simulator according to a curriculum-based approach. Simulation in Healthcare 2014; 9 (5): 288-94. doi: 10.1097/ SIH.0000000000000041
  • 44. Kuronen-Stewart C, Ahmed K, Aydin A, Cynk M, Miller P et al. Holmium laser enucleation of the prostate: Simulationbased training curriculum and validation. Urology 2015; 86 (3): 639-46. doi: 10.1016/j.urology.2015.06.008
  • 45. Wang Z, Ni Y, Zhang Y, Jin X, Xia Q, Wang H. Laparoscopic varicocelectomy: virtual reality training and learning curve. Journal of the Society of Laparoendoscopic Surgeons 2014; 18 (3). pii: e2014.00258. doi: 10.4293/JSLS.2014.00258
  • 46. Kang SG, Cho S, Kang SH, Haidar AM, Samavedi S et al. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology 2014; 84 (2): 345-50. doi: 10.1016/j.urology.2014.05.005
  • 47. Aloosh M, Noureldin YA, Andonian S. Transfer of flexible ureteroscopic stone-extraction skill from a virtual reality simulator to the operating theatre: A pilot study. Journal of Endourology 2016; 30 (10): 1120-1125.
  • 48. Feifer A, Delisle J, Anidjar M. Hybrid augmented reality simulator: preliminary construct validation of laparoscopic smoothness in a urology residency program. Journal of Urology. 2008 Oct;180(4):1455-9. doi: 10.1016/j.juro.2008.06.042
  • 49. Akand M, Civcik L, Buyukaslan A, Altintas E, Kocer E et al. Feasibility of a novel technique using 3-dimensional modeling and augmented reality for access during percutaneous nephrolithotomy in two different ex-vivo models. International Urology and Nephrology 2019; 51 (1): 17-25. doi: 10.1007/ s11255-018-2037-0
  • 50. Borgmann H, Rodríguez Socarrás M, Salem J, Tsaur I, Gomez Rivas J et al. Feasibility and safety of augmented reality-assisted urological surgery using smartglass. World Journal of Urology 2017; 35 (6): 967-972. doi: 10.1007/s00345-016-1956-6
  • 51. Dickey RM, Srikishen N, Lipshultz LI, Spiess PE, Carrion RE et al. Augmented reality assisted surgery: a urologic training tool. Asian Journal of Andrology 2016; 18 (5): 732-4. doi: 10.4103/1008-682X.166436
  • 52. Bertolo R, Hung A, Porpiglia F, Bove P, Schleicher M et al. Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come. World Journal of Urology 2019. doi: 10.1007/ s00345-019-02711-z
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

İlknur Böyükbaş TEPECİK, Ayşegül Neşe Çitak KURT, Selma Tural HESAPÇIOĞLU, Mehmet UĞURLU

Alper DEVECİ, Yahya Can DURA, Deniz Sözmen CILIZ, Güzelali ÖZDEMİR, Enver KILIÇ, Erman CEYHAN, Burak KULAKOĞLU, Sualp TURAN

Gökhan KURAN, Hüseyin ASLAN, Süheyl HAYTOĞLU, Özge Özalp YÜREĞİR, Sevcan Tuğ BOZDOĞAN

Tracheal intubation with the McGrath MAC X-blade videolaryngoscope in morbidly obese and nonobese patients

Zehra İpek ARSLAN, Hadi Ufuk YÖRÜKOĞLU

Does tumor size have prognostic value in patients undergoing lymphadenectomy in endometrioid-type endometrial cancer confined to the uterine corpus?

Nejat ÖZGÜL, Kunter YÜCE, Mehmet Coşkun SALMAN, Murat GÜLTEKİN, Dilek YÜKSEL, Caner ÇAKIR, Işın ÜREYEN, İsmet Çigdem KILIÇ, Yasin DURMUŞ, Gökhan BOYRAZ, Yalın Ay KARYAL, Mustafa Alper KARALÖK, Ahmet Taner TURAN

Seasonal, sex variations in vitamin d levels and their association with pulmonary function in children with asthma

Şebnem ÖZDOĞAN

Capillaroscopic findings in Turkish Takayasu arteritis patients

Ömer KARADAĞ, Ali AKDOĞAN, Abdulsamet ERDEN, Berkan ARMAĞAN, Levent KILIÇ, Sedat KİRAZ, Esra FIRAT ŞENTÜRK, Alper SARI

Meltem ÖZDEMİR, Handan SOYSAL, Önder ERASLAN, Alper DİLLİ

Ender SİR, Sami EKSERT

Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions

Timur KÖSE, Nefise Ülkü KARABAY YAVAŞOĞLU, Altuğ YAVAŞOĞLU, Aylin BUHUR, Fatih OLTULU, Melih DAĞDEVİREN, Gökçe Ceren KUŞÇU, Çevik GÜREL