Neuropeptide Y1 receptor antagonist but not neuropeptide Y itself increased bone mineral density when locally injected with hyaluronic acid in male Wistar rats

Neuropeptide Y1 receptor antagonist but not neuropeptide Y itself increased bone mineral density when locally injected with hyaluronic acid in male Wistar rats

Background/aim: The nervous system controls bone mass via both the central (CNS) and the peripheral (PNS) nervous systems. Intriguingly, neuropeptide Y (NPY) signaling occurs in both. Less is known on how the PNS stimulated NPY signaling controls bone metabolism. The objective of this study was to evaluate whether NPY or NPY1 receptor antagonist changes local bone mineral density (BMD) when injected into a Wistar rat tibia. Materials and methods: Tibial intramedullary area of 24 wild type male Wistar rats (average weight = 350 ± 50 g, average age = 4 ± 0.5 months) were injected with NPY $(1 × 10^{-5} M and 1 × 10^{-6} M)$ and NPY1 receptor antagonist $(1 × 10^{-4} M)$ dissolved in hyaluronic acid (HA) separately. Tibiae were collected after one and two weeks. BMD was measured with dual-energy X-ray absorptiometry (DXA) and micro quantitative computer tomography (QCT). Histological changes were analyzed with light microscopy, Goldner's Masson trichrome (MT), and hematoxylin-eosin staining. Results: According to DXA, the mean BMD of NPY dose 1 $(1 × 10^{-5} M)$ was significantly lower than that of the control (HA applied) group and not significantly but still lower than that of the NPY dose 2 and NPY1 antagonist applied groups. QCT results indicated the same pattern statistically insignificantly in the trabecular area but not in the cortex of the bones. Histologically, only NPY1 antagonist applied tibiae revealed young spongiosis bone trabeculae formed in the borderline of the cortical bones. HA was remarkably biocompatible and late degrading in the tissues. Conclusion: Local administration of NPY and NPY1 antagonists may hold regulating potential of BMD and bone formation. NPY1 antagonist caused new bone formation in trabecular bone when applied locally. NPY dissolved in HA however can be used to suppress bone formation.

___

  • 1. Feng X, McDonald JM. Disorders of bone remodeling. Annuual Review of Pathology 2011; 6: 121-145.
  • 2. Stewart S, Darwood A, Masouros S, Higgins C, Ramasamy A. Mechanotransduction in osteogenesis. Bone Joint Research 2020; 9 (1): 1-14. doi: 10.1302/2046-3758.91.BJR-2019-0043.R2
  • 3. Bajwa NM, Kesavan C, Mohan S. Long-term consequences of traumatic brain injury in bone metabolism. Frontiers in Neurology 2018; 9: 115.
  • 4. Gillespie JA. The nature of bone changes associated with nerve injuries and disease. Journal of Bone and Joint Surgery 1963; 36: 464-473.
  • 5. Freehafer AA, Mast WA. Lower extremity fractures in patients with spinal-cord injury. The Journal of Bone and Joint Surgery 1965; 47: 683-694.
  • 6. Hardy AG, Dickson JW. Pathological ossification in traumatic paraplegia. The Journal of Bone and Joint Surgery 1963; 45: 76- 87.
  • 7. Togari A. Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microscopic Research Techniques 2002; 58 (2): 77-84.
  • 8. Lundberg P, Lerner UH. Expression and regulatory role of receptors for vasoactive intestinal peptide in bone cells. Microscopic Research Techniques 2002; 58 (2): 98-103.
  • 9. Pedragosa-Badia X, Stichel J, Beck-Sickinger AG. Neuropeptide Y receptors: how to get subtype selectivity. Frontiers in Endocrinology (Lausanne) 2013; 4: 5. doi: 10.3389/fendo.2013.00005
  • 10. Shi Y-C, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50 (2): 430-436.
  • 11. Li C, Wu X, Liu S, Zhao Y, Zhu J et al. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Frontiers in Neuroscience 2019; 869. doi: 10.3389/fnins.2019.00869
  • 12. Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiological Reviews 2018; 98 (3): 1083-1112.
  • 13. Yi M, Li H, Wu Z, Yan J, Liu Q et al. A promising therapeutic target for metabolic diseases: neuropeptide Y receptors in humans. Cellular Physiology and Biochemistry 2018; 45 (1): 88- 107.
  • 14. Teixeira L, Sousa DM, Nunes AF, Sousa MM, Herzog H et al. NPY revealed as a critical modulator of osteoblast function in vitro: new insights into the role of Y1 and Y2 receptors. Journal of Cell Biochemistry 2009; 107 (5): 908-916. doi: 10.1002/jcb.22194
  • 15. Bjurholm A, Kreicbergs A, Schultzberg M. Fixation and demineralization of bone tissue for immunohistochemical staining of neuropeptides. Calcified Tissue International 1989; 45 (4): 227-231.
  • 16. Spencer GJ, Hitchcock IS, Genever PG. Emerging neuroskeletal signalling pathways: a review. FEBS Letters 2004; 559 (1–3): 6-12. doi: 10.1016/S0014-5793(04)00053-5
  • 17. Wee NKY, Sinder BP, Novak S, Wang X, Stoddard C et al. Skeletal phenotype of the neuropeptide Y knockout mouse. Neuropeptides 2019; 73: 78-88.
  • 18. Alves CJ, Alencastre IS, Neto E, Ribas J, Ferreira S et al. Bone injury and repair trigger central and peripheral NPY neuronal pathways. PLoS One 2016; 11 (11): e0165465. doi: 10.1371/ journal.pone.0165465
  • 19. Sousa DM, Herzog H, Lamghari M. NPY signalling pathway in bone homeostasis: Y1 receptor as a potential drug target. Current Drug Targets 2009; 10 (1): 9-19.
  • 20. Brain SD, Cox HM. Neuropeptides and their receptors: innovative science providing novel therapeutic targets. British Journal of Pharmacology 2009; 147 (S1): S202-S11. doi: 10.1038/sj.bjp.0706461
  • 21. Sousa DM, Baldock PA, Enriquez RF, Zhang L, Sainsbury A et al. Neuropeptide Y Y1 receptor antagonism increases bone mass in mice. Bone 2012; 51 (1): 8-16.
  • 22. Wee NKY, Sinder BP, Novak S, Wang X, Stoddard C et al. Skeletal phenotype of the neuropeptide Y knockout mouse. Neuropeptides 2019; 73: 78-88.
  • 23. Matic I, Matthews BG, Kizivat T, Igwe JC, Marijanovic I et al. Bone-specific overexpression of NPY modulates osteogenesis. Journal of Musculoskeletal Neuronal Interactions 2012; 12 (4): 209-218.
  • 24. Zhai P, Peng X, Li B, Liu Y, Sun H et al. The application of hyaluronic acid in bone regeneration. International Journal of Biological Macromolecules 2020; 151: 1224-1239.
  • 25. Sun QQ, Baraban SC, Prince DA, Huguenard JR. Targetspecific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus. Journal of Neuroscience 2003; 23 (29): 9639-9649. doi: 10.1523/JNEUROSCI.23-29-09639.2003
  • 26. Morgan DG, Small C, Abusnana S, Turton M, Gunn I et al. The NPY Y1 receptor antagonist BIBP 3226 blocks NPY induced feeding via a non-specific mechanism. Regulatory Peptides 1998; (75-76): 377-382.
  • 27. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Archives of Osteoporos 2013; 8 (1–2): 136.
  • 28. Novicoff WM, Manaswi A, Hogan MV, Brubaker SM, Mihalko WM et al. Critical analysis of the evidence for current technologies in bone-healing and repair. The Journal of Bone and Joint Surgery. American Volume 2008; 90 (Suppl 1): 85-91.
  • 29. Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE et al. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plastic and Reconstructive Surgery 2010; 125 (6): 1685-1692.
  • 30. Iaquinta M, Mazzoni E, Manfrini M, D’Agostino A, Trevisiol L et al. Innovative biomaterials for bone regrowth. International Journal of Molecular Science 2019; 20 (3): 618.
  • 31. Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S et al. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. In: Pietzsch J, Jung F (editors). Clinical Hemorheology and Microcirculation 2020; 73 (3): 381-408.
  • 32. Motyl KJ, Barbe MF. Bone and the Brain. In: Burr DB, Allen MR (editors). Basic and Applied Bone Biology. 2nd ed. London, UK: Elsevier Academic Press; 2019. pp. 349-350.
  • 33. Hirsch D, Zukowska Z. NPY and stress 30 years later: the peripheral view. Cellular and Molecular Neurobiology 2012; 32 (5): 645-659.
  • 34. Sousa DM, Baldock PA, Enriquez RF, Zhang L, Sainsbury A et al. Neuropeptide Y Y1 receptor antagonism increases bone mass in mice. Bone 2012; 51 (1): 8-16.
  • 35. Nunes AF, Liz MA, Franquinho F, Teixeira L, Sousa V et al. Neuropeptide Y expression and function during osteoblast differentiation- insights from transthyretin knockout mice. FEBS Journal 2010; 277 (1): 263-275. doi: 10.1111/j.1742- 4658.2009.07482.x
  • 36. Motyl KJ, Barbe MF. Bone and the Brain. In: Burr DB, Allen MR (editors). Basic and Applied Bone Biology. 2nd ed. London, UK: Elsevier Academic Press; 2019. pp. 360-361.
  • 37. Baldock PA, Lee NJ, Driessler F, Lin S, Allison S et al. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 2009; 4 (12): e8415.
  • 38. Lee NJ, Nguyen AD, Enriquez RF, Doyle KL, Sainsbury A et al. Osteoblast specific Y1 receptor deletion enhances bone mass. Bone 2011; 48 (3): 461-467.
  • 39. Tang P, Duan C, Wang Z, Wang C, Meng G et al. NPY and CGRP inhibitor influence on ERK pathway and macrophage aggregation during fracture healing. Cell Physiological Biochemistry 2017;41 (4): 1457-1467.
  • 40. Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. Journal of Biological Chemistry 2007; 282 (26): 19092-19102.
  • 41. Hempel U, Matthäus C, Preissler C, Möller S, Hintze V et al. Artificial matrices with high-sulfated glycosaminoglycans and collagen are anti-inflammatory and pro-osteogenic for human mesenchymal stromal cells. Journal of Cellular Biochemistry 2014; 115 (9): 1561-1571. doi: 10.1002/jcb.24814
  • 42. Förster Y, Bernhardt R, Hintze V, Möller S, Schnabelrauch M et al. Collagen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect — a pilot study in rats. Materials Science and Engineering: C 2017; 71: 84-92.
  • 43. Bae MS, Ohe JY, Lee JB, Heo DN, Byun W et al. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 2014; 59: 189-198.
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Assessment of Ankaferd Blood Stopper in experimental liver ischemia reperfusion injury

Marlen SÜLEYMAN, Can ERSAK, Fatih KARAAHMET, Abdullah DURHAN, İlknur ALKAN KUŞABBİ, Mehmet ŞENES, Mesut TEZ, Eylem Pınar ESER, Sema HÜCÜMENOĞLU, Koray KOŞMAZ, Abdullah ŞENLİKCİ, Recep PEKÇİCİ, Yılmaz ÜNAL

Radiological approaches to COVID-19 pneumonia

Recep SAVAŞ, Tuncay HAZIROLAN, Furkan UFUK

Frequency of sarcopenia and associated outcomes in patients with chronic obstructive pulmonary disease

Ruhuşen KUTLU, Fatma Gökşin CİHAN, Havva DEMİRCİOĞLU, Adil ZAMANİ, Şebnem YOSUNKAYA

Determination of related factors about diagnostic and treatment delays in patients with smear-positive pulmonary tuberculosis in Turkey

Mustafa Hamidullah TÜRKKANI, Çiğdem ÖZDİLEKCAN, Tarkan ÖZDEMİR

Omics era in forensic medicine: towards a new age

Mahmut Şerif YILDIRIM, Necdet SAĞLAM, Ramazan AKÇAN, Halit Canberk AYDOĞAN, Burak TAŞTEKİN

Presence of paroxysmal nocturnal hemoglobinuria in patients with idiopathic portal vein thrombosis: a single-center study

Senar EBİNÇ, Cengiz DEMİR, Ömer EKİNCİ

Importance of the National Early Warning Score (NEWS) at the time of discharge from the intensive care unit

Cihangir DOĞU, Özgür YAĞAN, Güvenç DOĞAN, Selçuk KAYIR

Statistical shape analysis of hand and wrist in paediatric population on radiographs

Semih BOLU, Ural KOÇ, Senem ÖZDEMİR, İlker ERCAN, Ayşegül YABACI, Onur TAYDAŞ

Posttraumatic growth and death anxiety in caregivers of cancer patients: PHOENIX study

Ali ALKAN, Ebru KARCI, Elif Berna KÖKSOY, Aslı ALKAN, Eduardo BRUERA, Filiz ÇAY ŞENLER

The association between chronic spontaneous urticaria and HLA class I and class II antigen

Songül ÇİLDAĞ, Taşkın ŞENTÜRK, Neslihan DOĞAN, Çiğdem YENİSEY