Morphometric analysis of hippocampus and intracranial formations based on their stages in patients diagnosed with major cognitive disorder

Morphometric analysis of hippocampus and intracranial formations based on their stages in patients diagnosed with major cognitive disorder

Background: Alzheimer’s disease (AD) is a major cognitive disorder classified as a common type of dementia. Magnetic resonance imaging (MRI) is the most practical method for diagnostic purposes in AD. The aim of the study was to determine the volume of the hippocampus and intracranial structures in AD using MRI. Methods: A total of 102 patients with AD were classified based on the mini mental test scores as early, moderate, and advanced stage. The control group included 35 healthy subjects. MRI were compared between the patients and control groups based on the calculations made utilizing volBrain software. Intracranial volumetric parameters were also compared between the three stages of AD. Results: The white matter volumes, total hippocampus, total cerebrum, right cerebrum, left cerebrum, truncus encephalic, total nucleus caudatus and total corpus amygdaloideum were significantly increased in the AD. The white matter volumes, right hippocampus, left hippocampus, total cerebrum, left cerebrum, and right cerebellum were significantly increased in the patients in the early stage compared to the patients in the advanced stage AD. Conclusion: The most efficient volumetric study in AD could be performed by obtaining long-term periodic morphometric data of an early diagnosed and regularly followed-up patient population.

___

  • 1. Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 2020; 16(3), 391-460. doi: 10.1002/alz.12068
  • 2. Hebert LE, Beckett LA, Scherr PA, Evans DA. Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Disease and Associated Disorders 2001; 15(4), 169-173. doi: 10.1097/00002093- 200110000-00002
  • 3. Dolci GA, Damanti S, Scortichini V, Galli A, Rossi PD et al. Alzheimer’s disease diagnosis: Discrepancy between clinical, neuroimaging, and cerebrospinal fluid biomarkers criteria in an Italian cohort of geriatric outpatients: A retrospective crosssectional study. Frontiers in medicine 2017; 4, 203, 1-10. doi: 10.3389/fmed.2017.00203
  • 4. Cheng D, Liu M. CNNs based multi-modality classification for AD diagnosis. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2017; 1-5. doi: 10.1109/CISPBMEI.2017.8302281
  • 5. Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K. et al. Sintered gold nanoparticles as an electrode material for paperbased electrochemical sensors. RSC Advances. 2013; 3(23): 8683-8691. doi: 10.1039/C3RA00102D
  • 6. Brickman AM, Tosto G, Gutierrez J, Andrews H, Gu Y et al. An MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease. Neurology. 2018; 91(15), 1402-1412. doi: 10.1212/WNL.0000000000006310
  • 7. Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’s disease. Journal of Neural Transmission. Supplementa. 1998; 53: 127–140. doi: 10.1007/978-3-7091- 6467-9_11
  • 8. Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP, et al. Higher atrophy rate of entorhinal cortex than hippocampus in Alzheimer’s disease. Neurology. 2004; 62: 422–427. doi: 10.1212/01.wnl.0000106462.72282.90
  • 9. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005; 64: 1563–1572. doi: 10.1212/01.WNL.0000159743.08996.99
  • 10. de Pol LA, van der Flier WM, Korf ES, Fox NC, Barkhof F et al. Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology. 2007; 69: 1491–1497. doi: 10.1212/01.wnl.0000277458.26846.96
  • 11. Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathologica Communications 2018; 6(1): 22, 1-10. doi: 10.1186/s40478-018-0515-3
  • 12. Zamani J, Sadr A, Javadi, A. Cortical and Subcortical Structural Segmentation in Alzheimer’s Disease. Frontiers in Biomedical Technologies 2019; 6(2): 94-98. doi: 10.18502/fbt.v6i2.1690
  • 13. Pelkmans W, Dicks E, Barkhof F, Vrenken H, Scheltens P et al. Gray matter T1‐w/T2‐w ratios are higher in Alzheimer’s disease. Human Brain Mapping 2019; 40: 3900–3909. doi: 10.1002/hbm.24638
  • 14. Manjón JV, Coupé P. volBrain: an online MRI brain volumetry system. Frontiers in Neuroinformatics 2016 Jul 27; 10:30, 1-14. doi: 10.3389/fninf.2016.00030
  • 15. Zamani J, Sadr A, Javadi AH. A Large-scale Comparison of Cortical and Subcortical Structural Segmentation Methods in Alzheimer’s Disease: a Statistical Approach. bioRxiv. 2020;1- 41. doi: 10.1101/2020.08.18.256321
  • 16. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 1975 Nov;12(3):189-198. doi: 10.1016/0022-3956(75)90026-6
  • 17. Rocca, WA, & Amaducci, L. Epidemiology of Alzheimer’s disease. In Neuroepidemiology, 55-96. CRC Press, 2019.
  • 18. Alattas, R, & Barkana, BD. A comparative study of brain volume changes in Alzheimer’s disease using MRI scans. In 2015 Long Island Systems, Applications and Technology, IEEE, 2015, 1-6. doi:10.1109/LISAT.2015.7160197
  • 19. Seab JP, Jagust WJ, Wong ST et al. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s Disease. Magnetic Resonance in Medicine 1998; 8:200-208. doi: 10.1002/mrm.1910080210
  • 20. Price EB, Moss HE. Osborn’s Brain: Imaging, Pathology, and Anatomy. Neuroophthalmology 2014; 38(2): 96–97. doi: 10.3109/01658107.2013.874459
  • 21. Konrad C, Ukas T, Nebel C, Arolt V, Toga AW et al. Defining the human hippocampus in cerebral magnetic resonance imagesAn overview of current segmentation protocols. NeuroImage. 2009; 47.4: 1185-1195. doi: 10.1016/j.neuroimage.2009.05.019
  • 22. Kawas C, Gray S, Brookmeyer FJ, Zonderman, A. Agespecific incidence rates of Alzheimer’s disease: The Baltimore Longitudinal Study’ Neurology, 2000; 54, 2072-2077. doi: 10.1212/wnl.54.11.2072
  • 23. Mielke, MM. Sex and gender differences in Alzheimer’s disease dementia. Psychiatric Times 2018; 35(11), 14-17.
  • 24. Esiri MM, Chance SA. Cognitive reserve, cortical plasticity and resistance to alzheimer’s disease. Alzheimer’s Research & Therapy. 2012; 4(2):7, 1-8. doi: 10.1186/alzrt105
  • 25. Vardarajan BN, Faber KM, Bird TD, Bennett DA, Rosenberg R et al. Age-specific incidence rates for dementia and Alzheimer disease in NIA- LOAD/NCRAD and EFIGA families: National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIALOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA). JAMA Neurology 2014; 71(3): 315- 323. doi: 10.1001/jamaneurol.2013.5570
  • 26. Edland SD, Rocca WA, Petersen RC, Cha RH, Kokmen E. Dementia and Alzheimer disease incidence rates do not vary by sex in Rochester, Minn. Archives of Neurology 2002; 59(10): 1589-1593. doi: 10.1001/archneur.59.10.1589
  • 27. Laakso MP, Lehtovirta M, Partanen K, Riekkinen Sr PJ, Soininen H. Hippocampus in Alzheimer’s disease: a 3-year follow-up MRI study. Biological Psychiatry. 2000 Mar 15;47(6):557-561. doi: 10.1016/s0006-3223(99)00306-6
  • 28. Voevodskaya O, Simmons A, Nordenskjöld R, Kullberg J, Ahlström H et al. Alzheimer’s Disease Neuroimaging Initiative. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Frontiers in Aging Neuroscience 2014; 6, 264, 1-14. doi: 10.3389/fnagi.2014.00264
  • 29. Vijayakumar A, Vijayakumar A. Comparison of hippocampal volume in dementia subtypes. ISRN radiology. 2012 Dec 2;2013, 1-5. doi: 10.5402/2013/174524
  • 30. Gerischer LM, Fehlner A, Köbe T, Prehn K, Antonenko D et al. Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer’s disease based on magnetic resonance imaging. NeuroImage: Clinical. 2018 Jan 1;18: 485-493. doi: 10.1016/j.nicl.2017.12.023
  • 31. Coupé P, Manjón J V, Fonov V, Pruessner J, Robles M et al. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage. 2011;54(2): 940-954. doi: 10.1016/j.neuroimage.2010.09.018
  • 32. Corriveau-Lecavalier, N, Duchesne, S, Gauthier, S, Hudon, C, Kergoat, MJ et al. A quadratic function of activation in individuals at risk of Alzheimer’s disease. Alzheimer’s & dementia (Amsterdam, Netherlands), 2021;12(1), e12139, 1-10. doi: 10.1002/dad2.12139
  • 33. Somayeh M, Cyrus R, Mario M. Quantified Brain MR Volumes Contribute to Diagnostic Delineation of Behavioral Variant Frontotemporal Dementia from Early Onset Alzheimer’s Disease, Neurology, Apr 2021; 96 (15 Supplement) 2489, 1-1.
  • 34. Jiang, Y, Zhou, X, Ip, FC, Chan, P, Chen, Y et al. Large-scale plasma proteomic profiling identifies a high-performance biomarker panel for Alzheimer’s disease screening and staging. Alzheimer’s & dementia: the journal of the Alzheimer’s Association, 2021; 10.1002/alz.12369, 1-15. doi: 10.1002/ alz.12369
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Paraoxonase-1 and fetuin-A levels in children with cerebral palsy

Meral YÜKSEL, Özlem GÜNGÖR, Seyda İĞNAK TARLIĞ, Özlem UNAY DEMİREL

An evaluation of the results of convalescent plasma therapy applied to pregnant women diagnosed as COVID-19- positive in a pandemic center: A prospective cohort study

Abdulsamet ERDEN, Özlem MORALOĞLU TEKİN, Atakan TANAÇAN, Ahmet OMMA, Seyit Ahmet EROL, Serpil ÜNLÜ, Hakan APAYDIN, Derya UYAN HENDEM, Orhan KÜÇÜKŞAHİN, İhsan ATEŞ, Dilek ŞAHİN, Şule GÖNCÜ AYHAN, Deniz OLUKLU

Arthroscopic Bankart repair improves upper limb exercise capacity, shoulder function and quality of life

Didem DERİCİ YILDIRIM, Fehmi Volkan ÖZTUNA, Figen DAĞ, Özlem BÖLGEN ÇİMEN

Morphometric analysis of hippocampus and intracranial formations based on their stages in patients diagnosed with major cognitive disorder

Zakir SAKÇI, Yaşar BÜKTE, Nurullah YÜCEL, Mehmet Tuğrul YILMAZ, Muzaffer ŞEKER

Test-retest reliability and minimal detectable change for measures of wearable gait analysis system (G-Walk) in children with cerebral palsy

Gamze ÇOBANOĞLU, Gökhan YAZICI, Melek VOLKAN YAZICI

Outcomes of the conservative management of the patients with endometrial intraepithelial neoplasia/endometrial cancer: Wait or treat!

Esra İŞÇİ BOSTANCI, Yasin DURMUŞ, Nurettin BORAN, Fulya KAYIKÇIOĞLU, A.Sinem DURU ÇÖTELİ

The relationship between elevated plasma zonulin levels and Hashimoto’s thyroiditis

Esra DEMİR, Güven YENMİŞ, Abdülbaki KUMBASAR, Bülent DEMİR, Berrak ŞAHTİYANCI, Hanişe ÖZKAN, İrem Kıraç UTKU, Burak ÖNAL

Assessment of subclinical cardiovascular alterations in nonfunctioning adrenal incidentalomas

Büşra CAN, Bülent CAN, Pelin KARACA ÖZER, Özge TELCİ ÇAKLILI

The risk of cancer in patients with primary Sjögren syndrome: a single-center study from Turkey

Funda ERBASAN, Tahir Saygın ÖĞÜT, Ece ÇELİK, Veli YAZISIZ, Bengisu ASLAN, Mustafa Ender TERZİOĞLU, Melis DİLBİL

Effectiveness of a supervised group exercise therapy based on the biopsychosocial model introduced simultaneously with anti-TNF therapy in anti-TNF-naive patients with active ankylosing spondylitis

Jale KARAKAYA, Edibe ÜNAL, Nur Banu KARACA, Umut KALYONCU, Sedat KİRAZ