Hydroxychloroquine induces endothelium-dependent and endothelium-independent relaxation of rat aorta

Hydroxychloroquine induces endothelium-dependent and endothelium-independent relaxation of rat aorta

Background/aim: Hydroxychloroquine (HCQ) is an antimalarial that is widely used in the management of rheumatoid arthritis and other autoimmune diseases. In this study, we aimed to examine the vascular effects of HCQ on rat aorta (RA). Materials and methods: The RA rings were suspended in isolated organ baths and tension was recorded isometrically. HCQ-induced relaxations were tested in the presence of the nitric oxide synthase inhibitor, nitro-L-arginine methyl ester (L-NAME, 100 mM); the cyclooxygenase enzyme inhibitor, indomethacin (10 mM); the calcium $(Ca^{2+})$ ion channel blocker, nilvadipine (10 μM); and the K+ ion channel inhibitors, tetraethylammonium (1 mM), glibenclamide (10 mM), 4-aminopyridine (1 mM), and barium chloride (30 mM). The effect of HCQ on $Ca^{2+}$ channels was examined using $Ca^{2+}$-free Krebs solution, and adding calcium chloride $(CaCl_2, 10^{-5}– 10^{-2} M)$ cumulatively to baths incubated with HCQ. Results: Removing the endothelium resulted in less relaxation of RA rings compared to endothelium-intact rings (p < 0.05). The effect of endothelium was supported by using L-NAME where HCQ produced-vasorelaxation was decreased (p < 0.05). The contraction of vascular rings was inhibited to a significant degree following the addition of $CaCl_2$, PE, or KCl on HCQ-incubated RA rings (p < 0.05). The incubation of the RA rings with the $Ca^{2+}$ channel blocker, the $K^+$ channel blockers, and the COX inhibitor, indomethacin did not significantly affect vascular relaxation induced by HCQ. Conclusion: HCQ produced relaxation of RA rings. The relaxation mechanism differs according to the concentration of HCQ. At concentrations of 10-6 and 10-5 M, the relaxation is endothelium-dependent and mediated by NO. We strongly suggest that $Ca^{2+}$ channel inhibition is involved at concentrations of 10-5 and 10-4 M, as well as NO.

___

  • 1. Wallace DJ, Gudsoorkar VS, Weisman MH, Venuturupalli SR. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nature Reviews Rheumatology 2012; 8 (9): 522–533. doi: 10.1038/nrrheum.2012.106
  • 2. Wallace DJ. The history of antimalarials. Lupus 1996; 5 (SUPPL. 1): 2–3.
  • 3. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology 2020; 16 (3): 155– 166. doi: 10.1038/s41584-020-0372-x
  • 4. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: From malaria to autoimmunity. Clinical Reviews in Allergy & Immunology 2012; 42 (2): 145–153. doi: 10.1007/s12016-010- 8243-x
  • 5. Rempenault C, Combe B, Barnetche T, Gaujoux-Viala C, Lukas C et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: A systematic review and meta-Analysis. Annals of the Rheumatic Diseases 2018; 77 (1): 98–103. doi:10.1136/annrheumdis-2017-211836
  • 6. Mathieu S, Pereira B, Tournadre A, Soubrier M. Cardiovascular effects of hydroxychloroquine: a systematic review and metaanalysis. Annals of the Rheumatic Diseases 2018; 77 (10): e65. doi: 10.1136/annrheumdis-2017-212571
  • 7. Bengtsson C, Andersson SE, Edvinsson L, Edvinsson ML, Sturfelt G et al. Effect of medication on microvascular vasodilatation in patients with systemic lupus erythematosus. Basic & Clinical Pharmacology & Toxicology 2010; 107 (6): 919–924. doi: 10.1111/j.1742-7843.2010.00604.x
  • 8. Godo S, Shimokawa H. Endothelial Functions. Arteriosclerosis, Thrombosis, and Vascular Biology 2017; 37 (9): e108–114. doi: 10.1161/ATVBAHA.117.309813
  • 9. Abiose AK, Grossmann M, Tangphao O, Hoffman BB, Blaschke TF. Chloroquine-induced venodilation in human hand veins. Clinical Pharmacology & Therapeutics 1997; 61 (6): 677–683. doi: 10.1016/S0009-9236(97)90103-X
  • 10. Adegunloye BJ, Sofola OA, Coker HAB. Relaxant effects of mefloquine on vascular smooth muscle in vitro. European Journal of Clinical Pharmacology 1993; 45 (1): 85–88. doi: 10.1007/BF00315355
  • 11. Aziba PI, Okpako DT. Effects of chloroquine on smooth muscle contracted with noradrenaline or high-potassium solutions in the rat thoracic aorta. Journal of Smooth Muscle Research 2003; 39 (3): 31–37. doi: 10.1540/jsmr.39.31
  • 12. Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundamental & Clinical Pharmacology 2019; 33 (5): 504–523. doi: 10.1111/fcp.12461
  • 13. Gómez-Guzmán M, Jiménez R, Romero M, Sánchez M, Zarzuelo MJ et al. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension 2014; 64 (2): 330–337. doi: 10.1161/HYPERTENSIONAHA.114.03587
  • 14. Ulusoy KG, Dogan MF, Cam SA, Arslan SO, Yildiz O. Propofol Relaxes Isolated Rat Aorta through BKCa Activation. Annals of Vascular Surgery 2019; 60: 397–406. doi: 10.1016/j. avsg.2019.04.005
  • 15. Capel RA, Herring N, Kalla M, Yavari A, Mirams GR et al. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Heart Rhythm 2015; 12 (10): 2186–2194. doi: 10.1016/j.hrthm.2015.05.027
  • 16. Cocks TM, Angus JA. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 1983; 305 (5935): 627–630. doi: 10.1038/305627a0
  • 17. Jankovic G, Marinko M, Milojevic P, Stojanovic I, Nenezic D et al. Mechanisms of endothelium-dependent vasorelaxation induced by procyanidin B2 in venous bypass graft. Journal of Pharmacological Sciences 2020; 142 (3): 101–108. doi: 10.1016/j. jphs.2019.11.006
  • 18. Li RWS, Yang C, Chan SW, Hoi MPM, Lee SMY et al. Relaxation effect of abacavir on rat basilar arteries. PLoS One 2015; 10 (4): 1–18. doi: 10.1371/journal.pone.0123043
  • 19. Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G et al. Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human endothelial cells. Journal of Clinical Investigation 1998; 102 (3): 595–605. doi: 10.1172/JCI1052
  • 20. Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R et al. Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. British Journal of Pharmacology 2020; 177 (2): 314–327. doi: 10.1111/bph.14864
  • 21. Wu K, Zhang Q, Wu X, Lu W, Tang H et al. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. British Journal of Pharmacology 2017; 174 (22): 4155–4172. doi: 10.1111/bph.13990
  • 22. Chang KS, Davis RF. Propofol produces endotheliumindependent vasodilation and may act as a Ca+2 channel blocker. Anesthesia & Analgesia 1993; 76: 24–32. doi: 10.1213/00000539- 199301000-00005
  • 23. Rosenthal J. Nilvadipine: Profile of a new calcium antagonist. An overview. Journal of Cardiovascular Pharmacology 1994; 24 (2): 92–107
  • 24. Sai WB, Yu MF, Wei MY, Lu Z, Zheng YM et al. Bitter tastants induce relaxation of rat thoracic aorta precontracted with high K+. Clinical and Experimental Pharmacology and Physiology 2014; 41 (4): 301–308. doi: 10.1111/1440-1681.12217
  • 25. White NJ, Watson JA, Hoglund RM, Chan XHS, Cheah PY et al. COVID-19 prevention and treatment: A critical analysis of chloroquine and hydroxychloroquine clinical pharmacology. PLOS Medicine 2020; 17 (9): e1003252. doi: 10.1371/journal. pmed.1003252
  • 26. Dogan MF, Arslan SO, Yildiz O, Kurtoglu M, Parlar A. PropofolInduced Vasodilation in Human Internal Mammary Artery: Role of Potassium Channels. Journal of Cardiothoracic and Vascular Anesthesia 2019; 33 (8): 2183–2191. doi: 10.1053/j. jvca.2018.12.015
  • 27. Ghatta S, Tunstall RR, Kareem S, Rahman M, O’Rourke ST. Sirolimus causes relaxation of human vascular smooth muscle: A novel action of sirolimus mediated via ATPsensitive potassium channels. Journal of Pharmacology and Experimental Therapeutics 2007; 320 (3): 1204–1208. doi: 10.1124/jpet.106.115329
  • 28. Höhn J, Pataricza J, Petri A, Tóth GK, Balogh Á et al. Levosimendan interacts with potassium channel blockers in human saphenous veins. Basic & Clinical Pharmacology & Toxicology 2004; 94 (6): 271–273. doi: 10.1111/j.1742- 7843.2004.pto940603.x
  • 29. Stojnic N, Gojkovic-Bukarica L, Peric M, Grbovic L, Lesic A et al. Potassium channel opener pinacidil induces relaxation of the isolated human radial artery. Journal of Pharmacological Sciences 2007; 104 (2): 122–129. doi: 10.1254/jphs.fp0061434
  • 30. Yildiz O, Nacitarhan C, Seyrek M. Potassium channels in the vasodilating action of levosimendan on the human umbilical artery. Journal of the Society for Gynecologic Investigation 2006; 13 (4): 312–315. doi: 10.1016/j.jsgi.2006.02.005
  • 31. Pestana CR, Oishi JC, Sobreiro H, Gerson SA, Rodrigues J. Inhibition of autophagy by chloroquine stimulates nitric oxide production and protects endothelial function during serum deprivation. Cellular Physiology and Biochemistry 2015; 37 (3): 1168–1177. doi: 10.1159/000430240
  • 32. Zhang DX, Gutterman DD. Transient receptor potential channel activation and endothelium-dependent dilation in the systemic circulation. Journal of Cardiovascular Pharmacology 2011; 57 (2): 133–139. doi: 10.1097/FJC.0b013e3181fd35d1
  • 33. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD et al. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 2009; 53 (3): 532–8. doi: 10.1161/HYPERTENSIONAHA.108.127100
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A device that facilitates screwing at an appropriate angle in quadrilateral surface fractures: 105-degree drill attachment

Cem Yalın KILINÇ, Nevres Hürriyet AYDOĞAN, İsmail Gökhan ŞAHİN, Emre GÜLTAÇ, Fatih İlker CAN, Çağatay GEMCİ, Ahmet Emrah AÇAN

The clinical follow-up and management of COVID-19 in children and adolescents with an immunocompromised state or a malignancy

Özlem TÜFEKÇİ, Dilek İNCE, Şefika AKYOL, Meral TORUN BAYRAM, Refik Emre ÇEÇEN, Ayşe ÇAKIL GÜZİN, Hatice KARAOĞLU ASRAK, İrem Ceren ERBAŞ, Şilem ÖZDEM ALATAŞ, Nurşen BELET

Effectiveness of a supervised group exercise therapy based on the biopsychosocial model introduced simultaneously with anti-TNF therapy in anti-TNF-naive patients with active ankylosing spondylitis

Jale KARAKAYA, Edibe ÜNAL, Nur Banu KARACA, Umut KALYONCU, Sedat KİRAZ

Arthroscopic Bankart repair improves upper limb exercise capacity, shoulder function and quality of life

Didem DERİCİ YILDIRIM, Fehmi Volkan ÖZTUNA, Figen DAĞ, Özlem BÖLGEN ÇİMEN

Application of high-flow oxygen therapy in acute pancreatitis complicated with acute respiratory dysfunction

Xiang JI, Jie ZHOU, Wenting WU, Yan TANG, Tongrong XU

Does memantine show chemopreventive effect against mice 4T1 breast tumor model?

Elif Burcu BAL, Gülşah ALBAYRAK, Funda DEMİRTAŞ KORKMAZ, Emin Ümit BAĞRIAÇIK

Determination of miRNA expression profile in patients with prostate cancer and benign prostate hyperplasia

Murat DEMİR, Osman ERGÜN, Alim KOŞAR, Muhammet Yusuf TEPEBAŞI, Pınar ASLAN KOŞAR, Okan SANCER

Turkey’s transition to face-to-face schooling during the COVID-19 pandemic

H. Eren SUNA, Mahmut ÖZER, Sadri ŞENSOY, Sevil UYGUN İLİKHAN, Matjaz PERC

Executive functions and personality traits of juvenile myoclonic epilepsy patients: a single-center experience of 23 cases

İpek MİDİ, Kadriye AĞAN YILDIRIM, Berin GÜLATAR TÜRKOĞLU

Determination of COVID-19 PCR positivity and mutation status in coronaVac vaccinated individuals in Turkey

İlknur KALELI, Ahmet ÇALIŞKAN, Büşra DÖNMEZ, Sedef Zeliha ÖNER, Tuğba SARI, Saniye KÜÇÜKAKIN YAKA, Mücahit SEÇME