Anakinra, an interleukin-1 receptor antagonist, increases the morphine analgesic effect and decreases morphine tolerance development by modulating oxidative stress and endoplasmic reticulum stress in rats

Anakinra, an interleukin-1 receptor antagonist, increases the morphine analgesic effect and decreases morphine tolerance development by modulating oxidative stress and endoplasmic reticulum stress in rats

Background/aim: Recent studies have shown that inflammation plays a role in morphine analgesia and tolerance development. Anakinra is a competitive inhibitor of IL-1 receptors and an antiinflammatory protein regulating IL-1β’s biological activity by avoiding signal transduction. In this study, we aimed to examine the effects of anakinra on morphine analgesia and tolerance. Materials and methods: In this study, 36 Wistar Albino (230–250 g) male rats were used. Animals were divided into 6 groups: saline (S), 100 mg/kg anakinra (A), 5mg/kg morphine (M), M+A, morphine tolerance (MT), and MT+A. The resulting analgesic effect was measured with hot plate and tail-flick analgesia tests. After the analgesia tests, the dorsal root ganglions (DRG) tissues were removed. Oxidative stress parameters [total antioxidant status (TAS), total oxidant status (TOS)], endoplasmic reticulum (ER) stress, and apoptosis proteins [E74-like factor 2 (elF-2α), activating transcription factor 4 (ATF-4), C/EBP homologous protein (CHOP), caspase-3, and bcl2-associated X protein (bax)] were measured in DRG tissues. Results: Anakinra showed an antinociceptive effect when given alone (P < 0.001). In addition, anakinra increased the analgesic effect of morphine (P < 0.05 to P < 0.001), and also decreased the tolerance to morphine at a significant level (P < 0.05 to P < 0.001). Moreover, it decreased oxidative stress and ER-stress when given as a single-dose morphine and tolerance induction (P < 0.01 to P < 0.001). Furthermore, anakinra decreased apoptosis proteins after tolerance development (P < 0.001). Conclusion: Anakinra has antinociceptive properties, and it increases the analgesic effect of morphine and also prevents tolerance development. These effects probably occur by the modulation of oxidative stress and ER-stress pathways.

___

  • 1. Shavit Y, Wolf G, Goshen I, Livshits D, Yirmiya R. Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance. Pain 2005; 115 (1-2): 50-59. doi: 10.1016/j. pain.2005.02.003
  • 2. Johnston IN, Milligan ED, Wieseler-Frank J, Frank MG, Zapata V et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. Journal of Neuroscience 2004; 24 (33): 7353-7365. doi: 10.1523/JNEUROSCI.1850-04.2004
  • 3. Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behaviour Immunity 2008; 22 (8): 1178-1189. doi: 10.1016/j.bbi.2008.05.004
  • 4. Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annual Review of Psychology 2000; 51: 29-57. doi: 10.1146/ annurev.psych.51.1.29
  • 5. Ferreira SH, Lorenzetti BB, Bristow AF, Poole S. Interleukin1β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 1988; 334 (6184): 698-700. doi: 10.1038/334698a0
  • 6. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A et al. Interleukin-1 β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 2001; 410 (6827): 471-475. doi: 10.1038/35068566
  • 7. Cunha JM, Cunha FQ, Poole S, Ferreira SH. Cytokinemediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. British Journal of Pharmacology 2000; 130 (6): 1418-1424. doi: 10.1038/sj.bjp.0703434
  • 8. Wolf G, Yirmiya R, Goshen I, Iverfeldt K, Holmlund L et al. Impairment of interleukin-1 (IL-1) signaling reduces basal pain sensitivity in mice: Genetic, pharmacological and developmental aspects. Pain 2003; 104 (3): 471-480. doi: 10.1016/s0304-3959(03)00067-8
  • 9. Mertens M, Singh JA. Anakinra for rheumatoid arthritis: A systematic review. The Journal of Rheumatology 2009; 36 (6): 1118-1125. doi: 10.3899/jrheum.090074
  • 10. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. The Lancet Rheumatology 2020; 2 (6): e325-e331. doi: 10.1016/ S2665-9913(20)30127-2
  • 11. Kuyrukluyıldız U, Küpeli İ, Bedir Z, Özmen Ö, Onk D et al. The effect of anakinra on paclitaxel-induced peripheral neuropathic pain in rats. Turkish Journal of Anaesthesiology&Reanimation 2016; 44 (6): 287-294. doi: 10.5152/TJAR.2016.02212
  • 12. Solovieva S, Leino-Arjas P, Saarela J, Luoma K, Raininko R et al. Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain 2004; 109 (1-2): 8-19. doi: 10.1016/j. pain.2003.10.020
  • 13. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005; 115 (1-2): 71-83. doi: 10.1016/j. pain.2005.02.009
  • 14. Kruger NJ. The Bradford method for protein quantitation. Methods in Molecular Biology 1994; 32: 9-15. doi: 10.1385/0- 89603-268-X:9
  • 15. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry 2004; 37 (2): 112-119. doi: 10.1016/j. clinbiochem.2003.10.014
  • 16. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 2005; 38 (12): 1103- 1111. doi: 10.1016/j.clinbiochem.2005.08.008
  • 17. Gul H, Yildiz O, Dogrul A, Yesilyurt O, Isimer A. The interaction between IL-1β and morphine: Possible mechanism of the deficiency of morphine-induced analgesia in diabetic mice. Pain 2000; 89 (1): 39-45. doi: 10.1016/s0304-3959(00)00343-2
  • 18. Raghavendra V, Tanga FY, DeLeo JA. Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 2004; 29 (2): 327-334. doi: 10.1038/sj.npp.1300315
  • 19. Peng X, Mosser DM, Adler MW, Rogers TJ, Meissler J et al. Morphine enhances interleukin-12 and the production of other pro-inflammatory cytokines in mouse peritoneal macrophages. Journal of Leukocyte Biology 2000; 68 (5): 723- 728. doi: 10.1189/jlb.68.5.723
  • 20. Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH et al. The immunosuppressive effects of chronic morphine treatment are partially dependent on corticosterone and mediated by the μ-opioid receptor. Journal of Leukocyte Biology 2002; 71 (5): 782-790. doi: 10.1189/jlb.71.5.782
  • 21. Berta T, Liu T, Liu YC, Xu ZZ, Ji RR. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9. Molecular Pain 2012; 8: 18. doi: 10.1186/1744-8069-8-18
  • 22. Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. The Journal of Clinical Investigation 2007; 117 (11): 3530-3539. doi: 10.1172/JCI32420
  • 23. Abdel-Zaher AO, Mostafa MG, Farghly HM, Hamdy MM, Omran GA et al. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. European Journal of Pharmacology 2013; 702 (1-3): 62-70. doi: 10.1016/j.ejphar.2013.01.036
  • 24. Inceoglu B, Bettaieb A, Trindade Da Silva CA, Lee KSS, Haj FG et al. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America 2015; 112 (29): 9082-9087. doi: 10.1073/ pnas.1510137112
  • 25. Zhang E, Yi MH, Shin N, Baek H, Kim S et al. Endoplasmic reticulum stress impairment in the spinal dorsal horn of a neuropathic pain model. Scientific Reports 2015; 5: 11555. doi: 10.1038/srep11555
  • 26. Zhang Y, Liu W, Ma C, Geng J, Li Y et al. Endoplasmic reticulum stress contributes to CRH-induced hippocampal neuron apoptosis. Experimental Cell Research 2012; 318 (6): 732-740. doi: 10.1016/j.yexcr.2012.01.006
  • 27. Seo S, Kwon YS, Yu K, Kim SW, Kwon OY et al. Naloxone induces endoplasmic reticulum stress in PC12 cells. Molecular Medicine Reports 2014; 9 (4): 1395-1399. doi: 10.3892/ mmr.2014.1935
  • 28. Liu D, Zhou Y, Peng Y, Su P, Li Z et al. Endoplasmic reticulum stress in spinal cord contributes to the development of morphine tolerance. Frontiers in Molecular Neuroscience 2018; 11: 72. doi: 10.3389/fnmol.2018.00072
  • 29. Mao J, Sung B, Ji RR, Lim G. Neuronal apoptosis associated with morphine tolerance: Evidence for an opioid-induced neurotoxic mechanism. Journal of Neuroscience 2002; 22 (17): 7650-7661. doi: 10.1523/JNEUROSCI.22-17-07650.2002
  • 30. Patel K, Bhaskaran M, Dani D, Reddy K, Singhal PC. Role of heme oxygenase–1 in morphine‐modulated apoptosis and migration of macrophages. The Journal of Infectious Diseases 2003; 187 (1): 47-54. doi: 10.1086/346042
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Comment on: “Treatment of idiopathic granulomatous mastitis and factors related with disease recurrence”

Tevfik Tolga ŞAHİN, Sami AKBULUT

Serum paraoxonase 1 and 3 activities in benign and malignant diseases of the prostate and changes in levels following robotic-assisted laparoscopic radical prostatectomy

Fevzi BEDİR, Hüseyin KOCATÜRK, Mehmet Sefa ALTAY, Engin ŞEBİN, Banu BEDİR

Seasonal variations of patients presenting dyspnea to emergency departments in Europe: Results from the EURODEM Study

Cinzia BARLETTA, Mehmet ERGİN, Yavuz KATIRCI, Zerrin Defne DÜNDAR, Oene VAN MEER, Veli Pekka HARJOLA, Franck VERSCHUREN, Michael CHRIST, Adela GOLEA, Jean CAPSEC, Luis GARCIA CASTRILLO, Said LARIBI, Richard BODY, Mehmet Akif KARAMERCAN, Yusuf Ali ALTUNCI, Anne-Maree KELLY

Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury

Nevin AL, Tülin ALKAN, Ayşen ÇAKIR, Mehmet CANSEV, Cansu KOÇ

The effect of long-term systemic immunosuppressive drug use on druse formation: a new perspective to age-related macular degeneration

Özkan SEVER, Rıdvan MERCAN

Genetic evaluation of Mycobacterium bovis isolates with MIRU-VNTR and spoligotyping

Nevin TUZCU, Fatih KÖKSAL

A single center cohort of 40 severe COVID-19 patients who were treated with convalescent plasma

Oktay OLMUŞÇELİK, Ömür Gökmen SEVİNDİK, Ali MERT, Hülya BİLGEN, Cem ERDOĞAN, Rümeysa DİNLEYİCİ, Aliihsan GEMİCİ, Hüseyin Saffet BEKÖZ, Abdullah KANSU

Comparison of the Sensititre YeastOne antifungal method with the CLSI M27-A3 reference method to determine the activity of antifungal agents against clinical isolates of Candida spp.

Ayşe BARIŞ, Rabiye ALTINBAŞ, Sümeyye ŞEN, Recep ÖZTÜRK, Nuri KİRAZ

The assessment of the serum levels of TWEAK and prostaglandin F2α in COVID – 19

Bahattin AVCI, Mustafa ÇAPRAZ, Caner GÜNAYDIN, Emine SEHMEN, Maruf BORAN, Demet YALÇIN KEHRİBAR, Mustafa CİHANGİROĞLU, Metin ÖZGEN

Proteomic analysis of the anticancer effect of various extracts of endemic Thermopsis turcica in human cervical cancer cells

Nuray VAROL, Murat KASAP, Hakan TERZİ, Mustafa YILDIZ, Mustafa SOLAK, Müjgan ÖZDEMİR ERDOĞAN, Saliha Handan YILDIZ, Nermin AKÇALI