Investigation of the effect of β-lactam antibiotics and serum on growth and gene expression in Escherichia coli strain JJ1886

  Background/aim: ß-Lactamase-producing Escherichia coli strain JJ1886 is an epidemic clone with high virulence properties. Because this strain can survive in the bloodstream, we aimed here to understand how ß-lactam antibiotics and human serum affect the growth and gene expression of this bacterium. Materials and methods: We report the time-dependent growth effect of normal human serum and heat-inactivated serum, together with ß-lactam antibiotics (including cefotaxime, ceftazidime, and carbenicillin), for E. coli strain JJ1886. Relative gene expression of ß-lactamase-related genes (encoding the ß-lactamase regulator, CTX-M-15, and peptidoglycan glycosyltransferase) and serum survival- associated genes (encoding lipoprotein NlpI, murein lipoprotein, lipopolysaccharide core heptose (I) kinase, lipopolysaccharide biosynthesis protein, capsule synthesis protein, and phosphate transport system) were investigated by RT-qPCR. Results: Cells proliferated during the exponential growth phase when the bacterium was treated with human serum. However, cefotaxime and ceftazidime together with serum had a bactericidal effect at each of the tested time points. Downregulation was observed in gene-encoding lipoprotein NlpI as a result of treatment with carbenicillin. Conclusion: Serum plus cefotaxime or ceftazidime had bactericidal activities. When the bacterium was treated with human serum and ß-lactam antibiotics, there were no significant changes in relative gene expression, except for the nlpI gene.

___

  • Qin W, Panunzio M, Biondi S. Beta-lactam antibiotics renaissance. Antibiotics (Basel) 2014; 3: 193-215.
  • Bozcal E, Dagdeviren M. Toxicity of β-lactam antibiotics: pathophysiology, molecular biology and possible recovery strategies. In: Malangu N, editor. Poisoning: From Specific Toxic Agents to Novel Rapid and Simplified Techniques for Analysis. Rijeka, Croatia: InTech Open; 2017. pp. 87-105.
  • Worthington RJ, Melander C. Overcoming resistance to beta- lactam antibiotics. J Org Chem 2013; 78: 4207-4213.
  • Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X. Sensor histidine kinase is a beta-lactam receptor and induces resistance to beta-lactam antibiotics. P Natl Acad Sci USA 2016; 113: 1648-1653.
  • D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M- type beta-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol 2013; 303: 305-317.
  • Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended-spectrum beta-lactamases in Gram-negative bacteria. Crit Rev Microbiol 2013; 39: 79-101.
  • Shakil S, Khan AU. Detection of CTX-M-15-producing and carbapenem-resistant Acinetobacter baumannii strains from urine from an Indian hospital. J Chemother 2010; 22: 324-327.
  • Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b- ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemoth 2011; 66: 1-14.
  • Coelho A, Gonzalez-Lopez JJ, Miro E, Alonso-Tarres C, Mirelis B, Larrosa MN, Bartolome RM, Andreu A, Navarro F, Johnson JR et al. Characterisation of the CTX-M-15-encoding gene in Klebsiella pneumoniae strains from the Barcelona metropolitan area: plasmid diversity and chromosomal integration. Int J Antimicrob Agents 2010; 36: 73-78.
  • Fischer J, Rodríguez I, Baumann B, Guiral E, Beutin L, Schroeter A, Kaesbohrer A, Pfeifer Y, Helmuth R, Guerra B. bla CTX-M-15-carrying Escherichia coli and Salmonella isolates from livestock and food in Germany. J Antimicrob Chemoth 2014; 69: 2951-2958.
  • Kjeldsen TSB, Overgaard M, Nielsen SS, Bortolaia V, Jelsbak L, Sommer M, Guardabassi L, Olsen JE. CTX-M-1 β-lactamase expression in Escherichia coli is dependent on cefotaxime concentration, growth phase and gene location. J Antimicrob Chemoth 2015; 70: 62-70.
  • Sabra AH, Araj GF, Kattar MM, Abi-Rached RY, Khairallah MT, Klena JD, Matar GM. Molecular characterization of ESBL- producing Shigella sonnei isolates from patients with bacilliary dysentery in Lebanon. J Infect Dev Ctries 2009; 3: 300-305.
  • Lindquist S, Galleni M, Lindberg F, Normark S. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Mol Microbiol 1989; 3: 1091-1102.
  • Banerjee R, Johnson JR. Escherichia coli ST131: variations on a theme of clonal expansion. Enferm Infec Micr Cl 2013; 31: 355-356.
  • Dahbi G, Mora A, Lopez C, Alonso MP, Mamani R, Marzoa J, Coira A, Garcia-Garrote F, Pita JM, Velasco D et al. Emergence of new variants of ST131 clonal group among extraintestinal pathogenic Escherichia coli producing extended-spectrum beta-lactamases. Int J Antimicrob Agents 2013; 42: 347-351.
  • Andersen PS, Stegger M, Aziz M, Contente-Cuomo T, Gibbons HS, Keim P, Sokurenko EV, Johnson JR, Price LB. Complete genome sequence of the epidemic and highly virulent CTX- M-15-producing H30-Rx subclone of Escherichia coli ST131. Genome Announcements 2013; 1: 1-2.
  • Shaik S, Ranjan A, Tiwari SK, Hussain A, Nandanwar N, Kumar N, Jadhav S, Semmler T, Baddam R, Islam MA et al. Comparative genomic analysis of globally dominant ST131 clone with other epidemiologically successful extraintestinal pathogenic Escherichia coli (ExPEC) Lineages. mBio 2017; 8: 1-15.
  • Johnson JR, Porter S, Thuras P, Castanheira M. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli infections in the United States (2011–2012). Open Forum Infect Dis 2017; 4: ofx089.
  • Shin J, Ko KS. Effect of plasmids harbouring blaCTX-M on the virulence and fitness of Escherichia coli ST131 isolates. Int J Antimicrob Agents 2015; 46: 214-218.
  • Owens RC Jr, Johnson JR, Stogsdill P, Yarmus L, Lolans K, Quinn J. Community transmission in the United States of a CTX-M-15-producing sequence type ST131 Escherichia coli strain resulting in death. J Clin Microbiol 2011; 49: 3406-3408.
  • Phan MD, Peters KM, Sarkar S, Lukowski SW, Allsopp LP, Gomes Moriel D, Achard ME, Totsika M, Marshall VM, Upton M et al. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 2013; 9: e1003834.
  • Weiser JN, Gotschlich EC. Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 1991; 59: 2252-2258.
  • Miajlovic H, Smith SG. Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett 2014; 354: 1-9.
  • Tseng YT, Wang SW, Kim KS, Wang YH, Yao YF, Chen CC, Chiang CW, Hsieh PC, Teng CH. NlpI facilitates deposition of C4bp on Escherichia coli by blocking classical complement- mediated killing, which results in high-level bacteremia. Infect Immun 2012; 80: 3669-3678.
  • Diao J, Bouwman C, Yan D, Kang J, Katakam AK, Liu P, Pantua H, Abbas AR, Nickerson NN, Austin C et al. Peptidoglycan association of murein lipoprotein is required for KpsD- dependent group 2 capsular polysaccharide expression and serum resistance in a uropathogenic Escherichia coli isolate. mBio 2017; 8: 1-15.
  • Lamarche MG, Dozois CM, Daigle F, Caza M, Curtiss R 3rd, Dubreuil JD, Harel J. Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 2005; 73: 4138-4145.
  • Liu YF, Yan JJ, Lei HY, Teng CH, Wang MC, Tseng CC, Wu JJ. Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect Immun 2012; 80: 1815-1822.
  • Putrins M, Kogermann K, Lukk E, Lippus M, Varik V, Tenson T. Phenotypic heterogeneity enables uropathogenic Escherichia coli to evade killing by antibiotics and serum complement. Infect Immun 2015; 83: 1056-1067.
  • Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 (Suppl. 1): 5-16.
  • European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology and Infectious Diseases. EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect 2000; 6: 509-515.
  • Cremet L, Broquet A, Jacqueline C, Chaillou C, Asehnoune K, Corvec S, Caroff N. Innate immune evasion of Escherichia coli clinical strains from orthopedic implant infections. Eur J Clin Microbiol Infect Dis 2016; 35: 993-999.
  • Miles AA, Misra SS, Irwin JO. The estimation of the bactericidal power of the blood. J Hyg (Lond) 1938; 38: 732-749.
  • Wang CY, Wang SW, Huang WC, Kim KS, Chang NS, Wang YH, Wu MH, Teng CH. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun 2012; 80: 3399-3409.
  • Forde BM, Ben Zakour NL, Stanton-Cook M, Phan MD, Totsika M, Peters KM, Chan KG, Schembri MA, Upton M, Beatson SA. The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone. PLoS One 2014; 9: e104400.
  • Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime–avibactam against beta-lactamase- producing Enterobacteriaceae and Pseudomonas aeruginosa . Antimicrob Agents Chemother 2014; 58: 5297-5305.
  • Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016; 14: 320-330.
  • Burgess DS, Hall RG. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta- lactamase and non-ESBL producing Klebsiella pneumoniae . Diagn Microbiol Infect Dis 2004; 49: 41-46.
  • Dutcher BS, Reynard AM, Beck ME, Cunningham RK. Potentiation of antibiotic bactericidal activity by normal human serum. Antimicrob Agents Chemother 1978; 13: 820- 826.
  • Singh SK, Parveen S, SaiSree L, Reddy M. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. P Natl Acad Sci USA 2015; 112: 10956-10961.
  • Neu HC, Swarz H. Resistance of Escherichia coli and Salmonella typhimurium to carbenicillin. J Gen Microbiol 1969; 58: 301- 305.
  • Lee S, Bae S. Molecular viability testing of viable but non- culturable bacteria induced by antibiotic exposure. Microb Biotechnol (in press).
  • Pagani L, Dell’Amico E, Migliavacca R, D’Andrea MM, Giacobone E, Amicosante G, Romero E, Rossolini GM. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol 2003; 41: 4264-4269.