WW-Gorenstein objects in triangulated categories

WW-Gorenstein objects in triangulated categories

We fix a proper class of triangles ξ in a triangulated category C . Let W be a class of objects in C such that ξxti ξ (W, W′ ) = 0 for all W, W′ ∈ W and all i ≥ 1. In this paper, we introduce the notion of W -Gorenstein objects and G(W) -(co)resolution dimensions of any object in C and study the properties of W -Gorenstein objects and characterize the finite G(W) -(co)resolution dimensions of any object. Some applications are given.

___

  • [1] Asadollahi J, Salarian S. Gorenstein objects in triangulated categories. J Algebra 2004; 281: 264-286.
  • [2] Asadollahi J, Salarian S. Tate cohomology and Gorensteinness for triangulated categories. J Algebra 2006; 299: 480-502.
  • [3] Beilinson AA, Bernstein J, Deligne P. Perverse sheaves, in: Analysis and Topology on Singular Spaces, I, Luminy, 1981, in: Astrisque, 1982; 100: 5-171.
  • [4] Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra 2000; 227: 268-361.
  • [5] Christensen LW. Gorenstein dimensions. Lecture Notes in Math. 1747, Berlin, Germany: Springer-Verlag, 2000.
  • [6] Enochs EE, Jenda OMG. Gorenstein injective and projective modules. Math Z 1995; 220: 611-633.
  • [7] Enochs EE, Jenda OMG. Relative homological algebra. de Gruyter Expositions in Mathematic, 30 Walter de Gruyter, 2000.
  • [8] Enochs EE, Jenda OMG, Torrecillas B. Gorenstein flat modules. Nanjing Daxue Xuebao Shuxue Bannian Kan 1993; 10: 1-9.
  • [9] Eilenberg S, Moore JC. Foundations of relative homological algebra. Amer Math Soc Mem 55, Providence, R.I., 1965.
  • [10] Geng Y, Ding N. W -Gorenstein modules. J Algebra 2011; 325: 132-146.
  • [11] Hartshorne R. Residues and Duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, Lecture Notes in Math., vol. 20, Berlin, Germany: Springer-Verlag, 1966.
  • [12] Holm H, Jørgensen P. Semi-dualizing modules and related gorenstein homological dimensions. J Pure App Alg 2006; 205: 423-445.
  • [13] Holm H. Gorenstein homological dimensions. J Pure App Alg 2004; 189: 167-193.
  • [14] Huang C, Huang Z. Gorenstein syzygy modules. J Algebra 2010; 324: 3408-3419.
  • [15] Huang C. GC -projective, injective and flat modules under change of rings. J Algebra Appl 2012; 11: 1-14.
  • [16] May JP. The additivity of traces in triangulated categories. Adv Math 2001; 163: 34-73.
  • [17] Neeman A. Triangulated Categories. Ann Math Stud. vol. 148, Princeton, NJ, USA: Princeton Univ Press, 2001.
  • [18] Ren W, Liu Z. Gorenstein homological dimensions for triangulated categories. J Algebra 2014; 410: 258-276.
  • [19] Trlifaj J. Covers, envelopes and cotorsion theories, Lecture notes for the workshop, Homolgical methods in module theory Cortona. 2000.
  • [20] Verdier JL. Catgories drives: tat 0, in: SGA 4 1 2 , in: Lecture Notes in Math., vol. 569, Berlin, Germany: SpringerVerlag, 1977.
  • [21] White D. Gorenstein projective dimension with respect to a semidualizing module. J Commut Algebra 2010; 2: 111-137.
  • [22] Yang X, Liu Z. Strongly Gorenstein projective, injective and flat modules. J Algebra 2008; 320: 2659-2674. [23] Zhu X. Resolving resolution dimensions. Algebra Represent Theor 2013; 16: 1165-1191.