Various results for series expansions of the error functions with the complex variable and some of their implications

Various results for series expansions of the error functions with the complex variable and some of their implications

This scientific investigation deals with introducing certain basic information relating to the error functions in z−plane, establishing extensive relations between various series expansions of the complex error functions and presenting a number of their implications.

___

  • [1] Abrarov SM, Quine BM. Accurate approximations for the complex error function with small imaginary argument. Journal of Mathematical Research 2015; 7: 44-53.
  • [2] Abrarov SM, Quine BM. A rational approximation of the Dawsons integral for efficient computation of the complex error function. Applied Mathematics and Computation 2018; 321: 526-543.
  • [3] Alzer H. Functional inequalities for the error function II. Aequationes Mathematicae 2009; 78: 113-121.
  • [4] Alzer H. Error function inequalities. Advances in Computational Mathematics 2010; 33: 349-379.
  • [5] Armstrong BH, Nicholls BW. Emission, absorption and transfer of radiation in heated atmospheres. New York, NY, USA: Pergamon Press, 1972.
  • [6] Berry MV. Uniform asymptotic smoothing of Stokess discontinuities. Proceedings of the Royal Society of London Series A 1862: 422; 7-21.
  • [7] Carlitz L. The inverse of the error function. Pacific Journal of Mathematics 1963: 13; 459-470.
  • [8] Chiarella C, Reichel A. On the evaluation of integrals related to the error function. Mathematics of Computation 1968: 22; 137-143.
  • [9] Chuev MA. An efficient method of analysis of the hyperfine structure of gamma resonance spectra using the Voigt profile. Doklady Physics 2011: 56; 318-322.
  • [10] Cody WJ, Paciorek KA, Thacher HC. Chebyshev approximations for Dawsons integral. Mathematics of Computation 1970: 24; 171-178.
  • [11] Dominici DE. The inverse of the cumulative standard normal probability function. Integral Transforms and Special Functions 2003: 14; 281-292.
  • [12] Emerson D. Interpreting astronomical spectra. John Wiley & Sons Ltd, 1996.
  • [13] Erdelyi A, Magnus W, Oberhettinger F, Tricomi FG. Higher Transcendental Functions, New York, NY, USA: McGraw-Hill Book, 1953.
  • [14] Faddeyeva VN, Terentev NM. Tables of the probability integral w(z) = e −z 2 ( 1 + 2i/√ π ∫ z 0 e −t 2 dt) for complex argument. Oxford, UK: Pergamon Press, 1961.
  • [15] Gautschi W. Efficient computation of the complex error function. SIAM Journal of Numerical Analysis 1970: 7; 187-198.
  • [16] Gordeyev CV. Plasma oscillations in a magnetic Field. Experimental and Theoretical Physics 1952: 6; 660-669.
  • [17] Hart RG. A close approximation related to the error function. Mathematics of Computation 1966: 20; 600-602.
  • [18] Herden G. The role of error-functions in order to obtain relatively optimal classification, Classification and related methods of data analysis. North-Holland, Amsterdam, 1988.
  • [19] Irmak H. Some novel applications in relation with certain equations and inequalities in the complex plane. Mathematical Communications 2018: 23; 9-14.
  • [20] Irmak H, Agarwal P. Some comprehensive inequalities consisting of Mittag-Leffler type functions in the Complex Plane. Mathematical Modelling of Natural Phenomena 2017: 12; 65-71.
  • [21] Irmak H, Duran M. Some results for error function with complex argument. Journal of Orissa Mathematical Society 2019; 38: 53-68.
  • [22] Jaeger JC. Some applications of the repeated integrals of the error function. Quarterly of Applied Mathematics 1946: 4; 100-103.
  • [23] Matta F, Reichel A. Uniform computation of the error function and other related functions. Mathematics of Computation 1971: 25; 339-344.
  • [24] McCabe JH. A continued fraction expansion with a truncation error estimate for Dawson’s integral. Mathematics of Computation 1974: 127; 811-816.
  • [25] McKenna SJ. A method of computing the complex probability function and other related functions over the whole complex plane. Astrophysics and Space Science 1984: 107; 71-83.
  • [26] Mori M. A method for evaluation of the error function of real and complex variable with high relative occuracy. Kyoto University Research Institute for Mathematical Sciences 1983: 19; 1081-1094
  • [27] Miller SS, Mocanu PT. Second-order differential inequalities in the complex plane. Journal of Mathematical Analysis and Applications 1978: 65; 289-305.
  • [28] Oliver FWJ, Lozier DW, Boisvert RF, Clark CW. NIST Handbook of Mathematical Functions. Cambridge University Press, UK, 2010.
  • [29] Olver FWJ. Asymptotics and special functions. MA, USA: Wellesley, AKP Classics, A K Peters Ltd., 1997.
  • [30] Poppe GPM, Wijers CMJ. More efficient computation of the complex error function. Association for Computing Machinery Transactions on Mathematical Software 1990: 16; 38-46.
  • [31] Rc A. Error estimates in simple quadrature with Voigt functions. Mathematics of Computation 1967: 21; 647-651.
  • [32] Rybicki GB. Dawson’s integral and the sampling theorem. Computational Physics 1090: 3; 85-87.
  • [33] Schreier F. The Voigt and complex error function: A comparison of computational methods. Journal of Quantitative Spectroscopy and Radiative Transfer 1992: 48; 743-762.
  • [34] Takahasi H, Mori M. Error estimation in the numerical integration of analytic functions. Report of the Computer Centre. University of Tokyo 1970: 3; 41-108.
  • [35] Tellambura C, Annamalai A. Efficient computation of erfc(x) for Large Arguments. IEEE Transactions on Communications 2000: 48; 529-532.
  • [36] Wallman H. Transient response and the central limit theorem of probability. Proceedings of the Symposia in Applied Mathematics 1950: 2; 91-105.
  • [37] Weideman JAC. Computation of the complex error function. SIAM Journal on Numerical Analysis 1995: 31; 1497- 1518.
  • [38] Yang ZH, Chu YH. On approximating the error function. Journal of Inequalities and Applications 2016: 2016, Article 311, 17 pages.