The isometries of the Bochner space $L^p(mu$,H)
The isometries of the Bochner space $L^p(mu$,H)
In this article, the known characterization of the surjective linear isometries of the Bochner space $L^p(mu$,H), for a $sigma$ - finite measure $mu$ and an arbitrary Hilbert space H, in terms of regular set isomorphisms of the $sigma$ - algebra involved and strongly measurable families of surjective isometries of H, is extended to arbitrary measures.
___
- [1] J. Lamperti, On the sometries of certain function spaces, Paci c J. Math., 8 (1958), 459-466.
- [2] J. L. Doob, Stochastic Processes, Wiley and Sons, New York, 1953.
- [3] J. Diestel and J. Uh. Jr., Vector Measures, Mathematical Surveys no. 15, Amer. Math.Soc., Providence, R. I., 1977.
- [4] S. Banach, Theorie des operation lineaires, Monografje Matematyczne, Warsaw, 1932.
- [5] M. Cambern, The isometries ofLp(X;K), Paci c J. Math., 55(1974), 9-17.
- [6] P. Greim and J. E. Jamison, Hilbert spaces have the strong Banach-Stone property forBochner spaces, Math. Z., 196(1987), 511-515.
- [7] M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z., 180 (1982),373-378.
- [8] B. Cengiz, On the duals of Lebesgue-BochnerLpspaces, Proc. Amer. Math. Soc., 114(1992),923-926.
- [9] B. Cengiz, The dual of the Bochner spaceLp(;H), Doga Tr. J. Mathematics (to appear).
- [10] H.L. Royden, Real Analysis, 3rd ed., Macmillan Co., New York,1988.
- [11] A. R. Sourour, The isometries ofLp(Ω;X), J. Funct. Anal., 30(1978), 276-285.