The cyclic behavior of the constrictive Markov operators

Let S be a Polish space, and let M\varSigma be the Banach space of finite signed measures on the Borel S-algebra \varSigma of S. Given a constrictive Markov operator T:M\varSigma\rightarrow M\varSigma, we use the asymptotic periodic decomposition of T to determine the set of T-invariant distributions in M\varSigma and the set of T-ergodic distributions. We also give the relationship between the asymptotic periodic decomposition and the cycles of the process relative to the operator T.

The cyclic behavior of the constrictive Markov operators

Let S be a Polish space, and let M\varSigma be the Banach space of finite signed measures on the Borel S-algebra \varSigma of S. Given a constrictive Markov operator T:M\varSigma\rightarrow M\varSigma, we use the asymptotic periodic decomposition of T to determine the set of T-invariant distributions in M\varSigma and the set of T-ergodic distributions. We also give the relationship between the asymptotic periodic decomposition and the cycles of the process relative to the operator T.

___

  • Bartoszek, W.: Asymptotic periodicity of the iterates of positive contractions on Banach lattices. Studia Math. 91(3), 179–188 (1988).
  • Bartoszek, W.: Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices. Ann. Polon. Math. 52(2), 165–173 (1990).
  • Bartoszek, W.: Riesz decomposition property implies asymptotic periodicity of positive and constrictive operators. Proc. Amer. Math. Soc. 116(1), 101–111 (1992).
  • Emel´ yanov, ` E.Y.: Regularity conditions for Markov semigroups on abstract L 1 -spaces (translation of Mat. Tr. 7(1), 50–82 (2004)). Siberian Adv. Math. 14(4), 1–29 (2004).
  • Jain, N. and Jaimson, B.: Contributions to Doeblin’s theory of Markov processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 8, 19–40 (1967).
  • Komorn´ık, J.: Asymptotic periodicity of the iterates of weakly constrictive Markov operators. Tohoku Math. J. (2) 38(1), 15–27 (1986).
  • Komorn´ık, J.: Asymptotic periodicity of Markov and related operators. In: Dynamics Reported (Eds.: C.K.R.T. Jones et al.) 31–68, Expositions in Dynamical Systems. New series 2. Berlin. Springer-Verlag 1993.
  • Komorn´ık, J. and Lasota, A.: Asymptotic decomposition of Markov operators. Bull. Pol. Acad. Sci., Math. 35(5–6), 321–327 (1987).
  • Komorn´ık, J. and Thomas, E.G.F.: Asymptotic periodicity of Markov operators on signed measures. Math. Bohem. 116(2), 174–180 (1991).
  • Lasota, A., Li, T.-Y. and Yorke, J.A.: Asymptotic periodicity of the iterates of Markov operators. Trans. Amer. Math. Soc. 286(2), 751–764 (1984).
  • Lasota, A. and Mackey, M.C.: Chaos, Fractals and Noise, 2nd ed. New York. Springer-Verlag 1994.
  • Meyn, S.P. and Tweedie, R.L.: The Doeblin decomposition. In: Doeblin and Modern Probability (Ed.: S. Grigorescu) 211–225, Contemp. Math. 149 (1993).
  • Meyn, S.P. and Tweedie, R.L.: Markov Chains and Stochastic Stability. Berlin. Springer-Verlag 1993.
  • Orey, S.: Limit Theorems for Markov Chains Transition Probabilities. London. Van Nostrand Reinhold 1971. R¨ abiger, F.: Attractors and asymptotic periodicity of positive operators on Banach lattices. Forum Math. 7(6), 665–683 (1995).
  • Revuz, D.: Markov Chains. Amsterdam. North-Holand Publishing Company 1975.
  • Villarreal, C.E.: Ergodic decomposition of Markov chains. Linear Algebra Appl. 283(1), 61–73 (1998).