The canonical class of a symplectic 4-manifold

The canonical class of a symplectic 4-manifold

In this article we present examples of simply connected symplectic 4-manifolds X whose canonical classes are represented by complicated disjoint unions of symplectic submanifolds of X: Theorem. Given finite collections {$g_i$}, {$m_i$}, i=1,...,n, of positive integers, there is a minimal symplectic simply connected 4-manifold X whose canonical class is represented by a disjoint union of embedded symplectic surfaces K ~ $S_{g_1}$,1 « ... « $S_{g_1,m_1}$ « ... « $S_g_n$,1 «... « S{$g_n$,$m_n$} where $S_{g_i},j$ is a surface of genus $g_i$. Furthermore, $c_1^2(X) = c_h(X)$ - (2+ b) where b= $S{i=1}^n m_i$ is the total number of connected components of the symplectic representative of the canonical class.

___

  • [1] R. Fintushel and R. Stern, Constructing lens space by surgery on knots, Math. Z. 175 (1980), 33-51.
  • [2] R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds, Jour. Di. Geom. 46 (1997), 181{235. alg-geom/9505018.
  • [3] R. Fintushel and R. Stern, Knots, links, and 4-manifolds, Invent. Math. 134 (1998), 363{400. dg-ga/9612014
  • [4] R. Fintushel and R. Stern, Surfaces in 4-manifolds, Math. Res. Letters 4 (1997), 907{914. dgga/ 9705009.
  • [5] R. Fintushel and R. Stern, Immersed 2-spheres in 4-manifolds and the immersed Thom conjecture, Turkish J. Math. 19 (1995), 27-39.
  • [6] R. Gompf, Nuclei of elliptic surfaces, Topology 30 (1991), 479-511.
  • [7] R. Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995), 527-595.
  • [8] E. Ionel and T. Parker, Gromov-Witten invariants of symplectic sums, preprint, math.SG/9806013.
  • [9] M. Marino, G. Moore, and G. Peradze, Four-manifold geography and superconformal symmetry, preprint. math.DG/9812042.
  • [10] D. McDu, The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc. 3 (1990), 679-712.
  • [11] D. McDu and L. Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994), 405-429.
  • [12] J. Morgan, T. Mrowka and Z. Szabo, Product formulas along T 3 for Seiberg-Witten invariants, in preparation.
  • [13] U. Persson, An introduction to the geography of surfaces of general type, in `Algebraic Geometry Bowdoin 1985', Proc. Symp. Pure Math. Vol. 46, 1987, pp.195-220.
  • [14] M. Symington, Symplectic rational blowdowns, Jour. Di. Geom. 50 (1998), 505-518.
  • [15] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1 (1994), 809-822.
  • [16] C. Taubes, More constraints on symplectic manifolds from Seiberg-Witten invariants, Math. Res. Letters 2 (1995), 9-14.
  • [17] E. Witten, Monopoles and four-manifolds, Math. Res. Letters 1 (1994), 769-796.