G-bundles on Abelian surfaces, hyperkahler manifolds, and stringy Hodge numbers

G-bundles on Abelian surfaces, hyperkahler manifolds, and stringy Hodge numbers

We study the moduli space $M_G$ (A) of flat G-bundles on an Abelian surface A, where G is a compact, simple, simply connected, connected Lie group. Equivalently, $M_G$ (A) is the (coarse) moduli space of s-equivalence classes of holomorphic semi-stable Gcnums -bundles with trivial Chern classes. $M_G$ (A) has the structure of a hyperkahler orbifold. We show that when G is Sp(n) or SU (n), $M_G$ (A) has a natural hyperkahler desingularization which we exhibit as a moduli space of Gcnums -bundles with an altered stability condition. In this way, we obtain the two known families of hyperkahler manifolds, the Hilbert scheme of points on a K3 surface and the generalized Kummer varieties. We show that for G not Sp (n) or SU (n), the moduli space $M_G$ (A) does emph{not} admit a hyperkahler resolution. sloppy{Inspired by the physicists Vafa and Zaslow, Batyrev and Dais define stringy Hodge numbers'' for certain orbifolds. These numbers have been proven to agree with the Hodge numbers of a crepant resolution (when it exists). We directly compute the stringy Hodge numbers of $M_{SU_(n)} (A)$ and $M_{Sp (n)} (A)$, thus deriving formulas (originally due to Gottsche and Gottsche-Soergel) for the Hodge numbers of the Hilbert schemes of points on K3 surfaces and generalized Kummer varieties.}

___

  • [1] Victor V. Batyrev. Birational Calabi-Yau n-folds have equal Betti numbers. In New trends in algebraic geometry (Warwick, 1996), pages 1-11. Cambridge Univ. Press, Cambridge, 1999.
  • [2] Victor V. Batyrev. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs. J.Eur. Math. Soc. (JEMS), 1(1):5-33, 1999.
  • [3] Victor V. Batyrev and Dimitrios I. Dais. Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry. Topology, 35(4):901-929, 1996.
  • [4] Arnaud Beauville. Varietes Kahleriennes dont la premiere classe de Chern est nulle. J. Dierential Geom., 18(4):755-782 (1984), 1983.
  • [5] R. Bezrukavnikov and V. Ginzburg. Hilbert schemes and reductive groups, 1998. In preparation.
  • [6] Armand Borel. Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes. Tohoku Math. J. (2), 13:216-240, 1961.
  • [7] Armand Borel, Robert Friedman, and John W. Morgan. Almost commuting elements in compact lie groups. Preprint, math.GR/9907007.
  • [8] Jim Bryan and Jason Fulman. Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups. Ann. Comb., 2(1):1-6, 1998.
  • [9] Jim Bryan and Naichung Conan Leung. The enumerative geometry of K3 surfaces and modular forms. J. Amer. Math. Soc., 13(2):371-410, 2000.
  • [10] R. W. Carter. Conjugacy classes in the Weyl group. Compositio Math., 25:1-59, 1972.
  • [11] J. Denef and F. Loeser. Motivic integration, quotient singularities and the McKay correspondence. arXiv:math.AG/9903187.
  • [12] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten. Strings on orbifolds. Nuclear Phys. B, 261(4):678-686, 1985.
  • [13] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten. Strings on orbifolds. II. Nuclear Phys. B, 274(2):285-314, 1986.
  • [14] Ron Donagi. Principal bundles on elliptic brations. Asian J. Math., 1(2):214{223, 1997.
  • [15] Ron Donagi. Taniguchi lectures on principal bundles on elliptic brations. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pages 33{46. World Sci. Publishing, River Edge, NJ, 1998.
  • [16] Robert Friedman, John Morgan, and Edward Witten. Vector bundles and F-theory. Comm. Math. Phys., 187(3):679-743, 1997.
  • [17] Robert Friedman, John W. Morgan, and Edward Witten. Principal G-bundles over elliptic curves. Math. Res. Lett., 5(1-2):97-118, 1998.
  • [18] Robert Friedman, John W. Morgan, and Edward Witten. Vector bundles over elliptic brations. J. Algebraic Geom., 8(2):279-401, 1999.
  • [19] Akira Fujiki. On primitively symplectic compact K¨ahler V -manifolds of dimension four. In Classi cation of algebraic and analytic manifolds (Katata, 1982), pages 71-250. BirkhauserBoston, Boston,Mass., 1983.
  • [20] William Fulton and Joe Harris. Representation theory. Springer-Verlag, New York, 1991. Arst course, Readings in Mathematics.
  • [21] L. G¨ottsche. The Betti numbers of the Hilbert scheme of points on a smooth projective surface.Math. Ann., pages 193-207, 1990.
  • [22] Lothar Göttsche. Hilbert schemes of zero-dimensional subschemes of smooth varieties. Springer-Verlag, Berlin, 1994.
  • [23] Lothar Göttsche. Orbifold-Hodge numbers of Hilbert schemes. In Parameter spaces (Warsaw, 1994), pages 83-87. Polish Acad. Sci., Warsaw, 1996.
  • [24] Lothar Göttsche and Wolfgang Soergel. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann., 296(2):235-245, 1993.
  • [25] Daniel Guan. Examples of compact holomorphic symplectic manifolds which are not Kahlerian. II. Invent. Math., 121(1):135-145, 1995.
  • [26] Daniel Guan. Examples of compact holomorphic symplectic manifolds which are not Kahlerian. III. Internat. J. Math., 6(5):709-718, 1995.
  • [27] Robin Hartshorne. Residues and duality. Springer-Verlag, Berlin, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64.With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20.
  • [28] Friedrich Hirzebruch and Thomas Höfer. On the Euler number of an orbifold. Math. Ann., 286(1-3):255-260, 1990.
  • [29] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Rocek. Hyper-Kahler metrics and supersymmetry.Comm. Math. Phys., 108(4):535-589, 1987.
  • [30] D. Huybrechts and M. Lehn. Framed modules and their moduli. Internat. J. Math., 6(2):297-324,1995.
  • [31] Daniel Huybrechts. Compact hyper-Kahler manifolds: basic results. Invent. Math., 135(1):63-113,1999.
  • [32] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Friedr. Vieweg &Sohn, Braunschweig, 1997.
  • [33] V. Kac and A. Smilga. Vacuum structure in supersymmetric Yang-Mills theories with any gauge group, 1999. Preprint, hep-th/9902029.
  • [34] Anthony W. Knapp. Lie groups beyond an introduction. Birkh¨auser Boston Inc., Boston, MA, 1996.
  • [35] P. B. Kronheimer. The construction of ALE spaces as hyper-K¨ahler quotients. J. Dierential Geom.,29(3):665-683, 1989.
  • [36] Yves Laszlo. About G-bundles over elliptic curves. Ann. Inst. Fourier (Grenoble), 48(2):413-424,1998.
  • [37] Eduard Looijenga. Root systems and elliptic curves. Invent. Math., 38(1):17-32, 1976/77.
  • [38] Shigeru Mukai. Semi-homogeneous vector bundles on an Abelian variety. J. Math. Kyoto Univ.,18(2):239-272, 1978.
  • [39] Shigeru Mukai. Duality between D(X) and D( b X) with its application to Picard sheaves. Nagoya Math. J., 81:153-175, 1981.
  • [40] Shigeru Mukai. Fourier functor and its application to the moduli of bundles on an Abelian variety.In Algebraic geometry, Sendai, 1985, pages 515-550. North-Holland, Amsterdam, 1987.
  • [41] Hiraku Nakajima. Lectures on Hilbert schemes of points on surfaces. American Mathematical Society,Providence, RI, 1999.
  • [42] Kieran G. O'Grady. Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math.,512:49-117, 1999.
  • [43] Miles Reid. McKay correspondence. Proc of Kinosaki conference (Nov 1996), and Warwick preprint 1997 (alg-geom/9702016).
  • [44] Miles Reid. La correspondance de McKay. (867), 1999. Seminaire Bourbaki.
  • [45] R. W. Richardson.Commuting varieties of semisimple Lie algebras and algebraic groups. Compositio Math., 38(3):311-327, 1979.
  • [46] Christoph Schweigert. On moduli spaces of flat connections with non-simply connected structure group. Nuclear Phys. B, 492(3):743-755, 1997.
  • [47] Carlos T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Etudes Sci. Publ. Math., (79):47-129, 1994.
  • [48] R. P. Thomas. Derived categories for the workingmathematician, 2000. Preprint,math.AG/0001045.
  • [49] K. Uhlenbeck and S.-T. Yau. On the existence of Hermitian-Yang Mills connections in stable vector bundles. Comm. Pure Appl. Math., 39(S, suppl.):S257-S293, 1986. Frontiers of the mathematical sciences: 1985 (New York, 1985).
  • [50] Cumrun Vafa. String vacua and orbifoldized LG models. Modern Phys. Lett. A, 4(12):1169-1185, 1989.
  • [51] Charles A. Weibel. An introduction to homological algebra. Cambridge University Press, Cambridge,1994.
  • [52] S.-T. Yau. On the Ricci curvature of a compact Kahler manifold and the complex Monge Ampere equation I. Com. Pure and Appl. Math, 31:339-411, 1978.
  • [53] Eric Zaslow. Topological orbifold models and quantum cohomology rings. Comm. Math. Phys.,156(2):301-331, 1993.