Some results on top generalized local cohomology modules with respect to a system of ideals

Some results on top generalized local cohomology modules with respect to a system of ideals

Let R be a commutative Noetherian ring and Φ be a system of ideals of R. In this paper, we study the annihilators and the set of attached prime ideals of top generalized local cohomology modules with respect to a system of ideals.

___

  • [1] Aghapournahr M, Melkersson L. Cofiniteness and coassociated primes of local cohomology modules. Mathematica Scandinavica 2009; 105: 161-170. doi: 10.7146/math.scand.a-15112
  • [2] Amjadi J, Naghipour R. Cohomological dimension of generalized local cohomology modules. Algebra Colloquium 2008; 15 (2): 303-308. doi: 10.1142/S1005386708000278
  • [3] Atazadeh A, Sedghi M, Naghipour R. On the annihilators and attached primes of top local cohomology modules. Archiv der Mathematik 2014; 102 (3): 225-236. doi: 10.1007/s00013-014-0629-1
  • [4] Atazadeh A, Sedghi M, Naghipour R. Some results on the annihilators and attached primes of local cohomology modules. Archiv der Mathematik 2017; 109 (5): 415-427. doi: 10.1007/s00013-017-1081-9
  • [5] Bijan-Zadeh MH. Torsion theories and local cohomology over commutative Noetherian rings. Journal of the London Mathematical Society 1979; 19 (2): 402-410. doi 10.1112/jlms/s2-19.3.402
  • [6] Bijan-Zadeh MH. A common generalization of local cohomology theories. Glasgow Mathematical Journal 1980; 21 (2): 173-181. doi: 10.1017/S0017089500004158
  • [7] Bijan-Zadeh MH. On the artinian property of certain general local cohomology modules. Journal of the London Mathematical Society 1985; 32 (2): 399-403. doi: 10.1112/jlms/s2-32.3.399
  • [8] Brodmann MB, Sharp RY, Local Cohomology: an Algebraic Introduction with Geometric Applications. Cambridge, UK: Cambridge University Press, 2013.
  • [9] Bruns W, Herzog J. Cohen-Macaulay rings. Cambridge, UK: Cambridge University Press, 1993.
  • [10] Bourbaki N. Commutative Algebra, Elements of Mathematics. Herman, Paris: Addison-Wesley, 1972.
  • [11] Chu L. Top local cohomology modules with respect to a pair of ideals. Proceedings of the American Mathematical Society 2011; 139: 777-782. doi: 10.1090/S0002-9939-2010-10471-9
  • [12] Cuong NT, Hoang NV. On the vanishing and the finiteness of supports of generalized local cohomological modules. Manuscripta Mathematica 2008; 126: 59-72. doi: 10.1007/s00229-007-0162-7
  • [13] Dibaei MT, Yassemi S. Attached primes of the top local cohomology modules with respect to an ideal. Archiv der Mathematik 2005; 84: 292-297. doi: 10.1007/s00013-004-1156-2
  • [14] Divaani-Aazar K, Naghipour R, Tousi M. Cohomological dimension of certain algebraic varieties. Proceedings of the American Mathematical Society 2012; 130 (12): 3537-3544. doi: 10.2307/1194394
  • [15] Divaani-Aazar K, Sazeedeh R, Tousi M. On vanishing of generalized local cohomology modules. Algebra Colloquium 2005; 12 (2): 213-218. doi: 10.1142/S1005386705000209
  • [16] Divaani-Aazar K, Hajikarimi A. Generalized local cohomology modules and homological Gorenstein dimensions. Communications in Algebra 2011; 39: 2051-2067. doi: 10.1080/00927870903295380
  • [17] Herzog J. Komplexe, Auflösungen und dualität in der localen Algebra. Habilitationsschrift, Universität Regensburg, Germany, 1970 (in German).
  • [18] Herzog J, Zamani N. Duality and vanishing of generalized local cohomology. Archiv der Mathematik 2003; 81: 512-519. doi: 10.1007/s00013-003-4769-y
  • [19] Macdonald IG. Secondary representation of modules over a commutative ring. Symposia Mathematica 1973; 11: 23-43.
  • [20] Matsumura H. Commutative Ring Theory. Cambridge, UK: Cambridge University Press, 1986.
  • [21] Nam TT, Tri NM, Dong NV. Some properties of generalized local cohomology modules with respect to a pair of ideals. International Journal of Algebra and Computation 204; 24 (7): 1043-1054. doi: 10.1142/S0218196714500453
  • [22] Rotman J. An introduction to Homological Algebra. Springer, 2009.
  • [23] Takahashi R, Yoshino Y, Yoshizawa T. Local cohomology based on a nonclosed support defined by a pair of ideals. Journal of Pure and Applied Algebra 2009; 213: 582-600. doi: 10.1016/j.jpaa.2008.09.008
  • [24] Zöschinger H. Über koassoziierte Primideale. Mathematica Scandinavica 1988; 63: 196-211 (in German). doi: 10.7146/math.scand.a-12233